Download Free Modular Representation Theory Of Finite And P Adic Groups Book in PDF and EPUB Free Download. You can read online Modular Representation Theory Of Finite And P Adic Groups and write the review.

This volume is an outgrowth of the program Modular Representation Theory of Finite and p-Adic Groups held at the Institute for Mathematical Sciences at National University of Singapore during the period of 1-26 April 2013. It contains research works in the areas of modular representation theory of p-adic groups and finite groups and their related algebras. The aim of this volume is to provide a bridge — where interactions are rare between researchers from these two areas — by highlighting the latest developments, suggesting potential new research problems, and promoting new collaborations.It is perhaps one of the few volumes, if not only, which treats such a juxtaposition of diverse topics, emphasizing their common core at the heart of Lie theory.
Representation Theory of Finite Groups is a five chapter text that covers the standard material of representation theory. This book starts with an overview of the basic concepts of the subject, including group characters, representation modules, and the rectangular representation. The succeeding chapters describe the features of representation theory of rings with identity and finite groups. These topics are followed by a discussion of some of the application of the theory of characters, along with some classical theorems. The last chapter deals with the construction of irreducible representations of groups. This book will be of great value to graduate students who wish to acquire some knowledge of representation theory.
This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.
This book gives a comprehensive treatment of the theory of G-Algebras and shows how it can be used to solve a number of problems about blocks, modules and almost split sequences. The new approach to modular representation theory of finite groups was developed mainly by Lluis Puig since the 1970s and has several characteristic features: unification of several theories (e.g. block theory and module theory) under a single concept, introduction of new invariants (e.g. source algebras and multiplicity modules) which shed new light on the whole, new point of view on some classical theorems (e.g. Brauer's second main theorem) yielding more precise results, deep structural results such as Puig's theory on nilpotent blocks.
Publisher Description
This book is an outgrowth of a Research Symposium on the Modular Representation Theory of Finite Groups, held at the University of Virginia in May 1998. The main themes of this symposium were representations of groups of Lie type in nondefining (or cross) characteristic, and recent developments in block theory. Series of lectures were given by M. Geck, A. Kleshchev and R. Rouquier, and their brief was to present material at the leading edge of research but accessible to graduate students working in the field. The first three articles are substantial expansions of their lectures, and each provides a complete account of a significant area of the subject together with an extensive bibliography. The remaining articles are based on some of the other lectures given at the symposium; some again are full surveys of the topic covered while others are short, but complete, research articles. The opportunity has been taken to produce a book of enduring value so that this is not a conference proceedings in the conventional sense. Material has been updated so that this book, through its own content and in its extensive bibliographies, will serve as an invaluable resource for all those working in the area, whether established researchers or graduate students who wish to gain a general knowledge of the subject starting from a single source.
This classic book contains an introduction to systems of l-adic representations, a topic of great importance in number theory and algebraic geometry, as reflected by the spectacular recent developments on the Taniyama-Weil conjecture and Fermat's Last Theorem. The initial chapters are devoted to the Abelian case (complex multiplication), where one
Gives an introduction to the general theory of representations of algebraic group schemes. This title deals with representation theory of reductive algebraic groups and includes topics such as the description of simple modules, vanishing theorems, Borel-Bott-Weil theorem and Weyl's character formula, and Schubert schemes and lne bundles on them.