Download Free Modular Forms On The Moduli Space Of Polarised K3 Surfaces Book in PDF and EPUB Free Download. You can read online Modular Forms On The Moduli Space Of Polarised K3 Surfaces and write the review.

"This thesis concerns a subject from algebraic geometry, a branch of mathematics. Geometry is the study of spatial structures; algebraic geometry looks at spatial objects that can be described using polynomial formulas and uses abstract algebraic methods to study properties of those objects. The possibility to use the power and precision of algebraic methods in combination with geometric intuition makes this a beautiful subject. K3 surfaces are a class of 2-dimensional geometric objects. There are infinitely many distinct K3 surfaces; it is not possible to enumerate them all. However, it is possible to create a "catalogue", in which every possible K3 surface occurs exactly once. This catalogue itself can be seen to be a geometric object; it is called the moduli space of K3 surfaces. A point of this moduli space corresponds to a particular K3 surface; a small displacement within the moduli space gives a small deformation of the surface. In this thesis we study the structure of the moduli space of K3 surfaces. It turns out that so-called modular forms are relevant to this. These are functions that behave in a very special way under the action of a discrete group of transformations. These modular forms contain a surprising amount of number-theoretic information."--Samenvatting auteur.
This paper is concerned with the problem of describing compact moduli spaces for algebraic [italic]K3 surfaces of given degree 2[italic]k.
The guiding principle in this monograph is to develop a new theory of modular forms which encompasses most of the available theory of modular forms in the literature, such as those for congruence groups, Siegel and Hilbert modular forms, many types of automorphic forms on Hermitian symmetric domains, Calabi-Yau modular forms, with its examples such as Yukawa couplings and topological string partition functions, and even go beyond all these cases. Its main ingredient is the so-called 'Gauss-Manin connection in disguise'.
K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi–Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin–Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.
This book provides an overview of the latest developments concerning the moduli of K3 surfaces. It is aimed at algebraic geometers, but is also of interest to number theorists and theoretical physicists, and continues the tradition of related volumes like “The Moduli Space of Curves” and “Moduli of Abelian Varieties,” which originated from conferences on the islands Texel and Schiermonnikoog and which have become classics. K3 surfaces and their moduli form a central topic in algebraic geometry and arithmetic geometry, and have recently attracted a lot of attention from both mathematicians and theoretical physicists. Advances in this field often result from mixing sophisticated techniques from algebraic geometry, lattice theory, number theory, and dynamical systems. The topic has received significant impetus due to recent breakthroughs on the Tate conjecture, the study of stability conditions and derived categories, and links with mirror symmetry and string theory. At the same time, the theory of irreducible holomorphic symplectic varieties, the higher dimensional analogues of K3 surfaces, has become a mainstream topic in algebraic geometry. Contributors: S. Boissière, A. Cattaneo, I. Dolgachev, V. Gritsenko, B. Hassett, G. Heckman, K. Hulek, S. Katz, A. Klemm, S. Kondo, C. Liedtke, D. Matsushita, M. Nieper-Wisskirchen, G. Oberdieck, K. Oguiso, R. Pandharipande, S. Rieken, A. Sarti, I. Shimada, R. P. Thomas, Y. Tschinkel, A. Verra, C. Voisin.
A strongly reflective modular form with respect to an orthogonal group of signature (2; n) determines a Lorentzian Kac{Moody algebra. We find a new geometric application of such modular forms: we prove that if the weight is larger than n then the corresponding modular variety is uniruled. We also construct new reflective modular forms and thus provide new examples of uniruled moduli spaces of lattice polarised K3 surfaces. Finally we prove that the moduli space of Kummer surfaces associated to (1; 21)-polarised abelian surfaces is uniruled.
In recent years, research in K3 surfaces and Calabi–Yau varieties has seen spectacular progress from both arithmetic and geometric points of view, which in turn continues to have a huge influence and impact in theoretical physics—in particular, in string theory. The workshop on Arithmetic and Geometry of K3 surfaces and Calabi–Yau threefolds, held at the Fields Institute (August 16-25, 2011), aimed to give a state-of-the-art survey of these new developments. This proceedings volume includes a representative sampling of the broad range of topics covered by the workshop. While the subjects range from arithmetic geometry through algebraic geometry and differential geometry to mathematical physics, the papers are naturally related by the common theme of Calabi–Yau varieties. With the big variety of branches of mathematics and mathematical physics touched upon, this area reveals many deep connections between subjects previously considered unrelated. Unlike most other conferences, the 2011 Calabi–Yau workshop started with 3 days of introductory lectures. A selection of 4 of these lectures is included in this volume. These lectures can be used as a starting point for the graduate students and other junior researchers, or as a guide to the subject.
This book focusses on a large class of objects in moduli theory and provides different perspectives from which compactifications of moduli spaces may be investigated. Three contributions give an insight on particular aspects of moduli problems. In the first of them, various ways to construct and compactify moduli spaces are presented. In the second, some questions on the boundary of moduli spaces of surfaces are addressed. Finally, the theory of stable quotients is explained, which yields meaningful compactifications of moduli spaces of maps. Both advanced graduate students and researchers in algebraic geometry will find this book a valuable read.