Download Free Modis Moderate Resolution Imaging Spectrometer Book in PDF and EPUB Free Download. You can read online Modis Moderate Resolution Imaging Spectrometer and write the review.

This book provides information on the Earth science remote sensing data information and data format such as HDF-EOS. It evaluates the current data processing approaches and introduces data searching and ordering from different public domains. It further explores the remote sensing and GIS migration products and WebGIS applications. Both volumes are designed to give an introduction to current and future NASA, NOAA and other Earth science remote sensing.
This book gives a much needed explanation of the basic physical principles of radiative transfer and remote sensing, and presents all the instruments and retrieval algorithms in a homogenous manner. The editors provide, for the first time, an easy path from theory to practical algorithms in one easily accessible volume, making the connection between theoretical radiative transfer and individual practical solutions to retrieve aerosol information from remote sensing, and providing the specifics and intercomparison of all current and historical retrieval methods.
Remote observations of Earth from space serve an extraordinarily broad range of purposes, resulting in extraordinary demands on those at the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), and elsewhere who must decide how to execute them. In research, Earth observations promise large volumes of data to a variety of disciplines with differing needs for measurement type, simultaneity, continuity, and long-term instrument stability. Operational needs, such as weather forecasting, add a distinct set of requirements for continual and highly reliable monitoring of global conditions. The Role of Small Satellites in NASA and NOAA Earth Observation Programs confronts these diverse requirements and assesses how they might be met by small satellites. In the past, the preferred architecture for most NASA and NOAA missions was a single large spacecraft platform containing a sophisticated suite of instruments. But the recognition in other areas of space research that cost-effectiveness, flexibility, and robustness may be enhanced by using small spacecraft has raised questions about this philosophy of Earth observation. For example, NASA has already abandoned its original plan for a follow-on series of major platforms in its Earth Observing System. This study finds that small spacecraft can play an important role in Earth observation programs, providing to this field some of the expected benefits that are normally associated with such programs, such as rapid development and lower individual mission cost. It also identifies some of the programmatic and technical challenges associated with a mission composed of small spacecraft, as well as reasons why more traditional, larger platforms might still be preferred. The reasonable conclusion is that a systems-level examination is required to determine the optimum architecture for a given scientific and/or operational objective. The implied new challenge is for NASA and NOAA to find intra- and interagency planning mechanisms that can achieve the most appropriate and cost-effective balance among their various requirements.
A significant step forward in the world of earth observation was made with the development of imaging spectrometry. Imaging spectrometers measure reflected solar radiance from the earth in many narrow spectral bands. Such a spectroscopical imaging system is capable of detecting subtle absorption bands in the reflectance spectra and measure the reflectance spectra of various objects with a very high accuracy. As a result, imaging spectrometry enables a better identification of objects at the earth surface and a better quantification of the object properties than can be achieved by traditional earth observation sensors such as Landsat TM and SPOT. The various chapters in the book present the concepts of imaging spectrometry by discussing the underlying physics and the analytical image processing techniques. The second part of the book presents in detail a wide variety of applications of these new techniques ranging from mineral identification, mapping of expansive soils, land degradation, agricultural crops, natural vegetation and surface water quality. Additional information on extras.springer.com Sample hyperspectral remote sensing data sets and ENVI viewing software (Freelook) are available on http://extras.springer.com
Cycles, water, carbon.
Satellite Soil Moisture Retrieval: Techniques and Applications offers readers a better understanding of the scientific underpinnings, development, and application of soil moisture retrieval techniques and their applications for environmental modeling and management, bringing together a collection of recent developments and rigorous applications of soil moisture retrieval techniques from optical and infrared datasets, such as the universal triangle method, vegetation indices based approaches, empirical models, and microwave techniques, particularly by utilizing earth observation datasets such as IRS III, MODIS, Landsat7, Landsat8, SMOS, AMSR-e, AMSR2 and the upcoming SMAP. Through its coverage of a wide variety of soil moisture retrieval applications, including drought, flood, irrigation scheduling, weather forecasting, climate change, precipitation forecasting, and several others, this is the first book to promote synergistic and multidisciplinary activities among scientists and users working in the hydrometeorological sciences. - Demystifies soil moisture retrieval and prediction - Links soil moisture retrieval techniques with new satellite missions for earth and environmental science oriented problems - Written to be accessible to a wider range of professionals with a common interest in geo-spatial techniques, remote sensing, sustainable water resource development, and earth and environmental issues