Download Free Modified Nucleosides Book in PDF and EPUB Free Download. You can read online Modified Nucleosides and write the review.

Palladium-Catalyzed Modification of Nucleosides, Nucleotides and Oligonucleotides describes the procedures and protocols related to the modification of nucleosides, nucleotides and oligonucleotides via Pd-mediated cross-coupling processes. The book highlights the growing area of nucleic acid modification and how Pd-mediated coupling reactions can assist this development. Users will find key synthetic protocols for these reactions in this latest volume in the Latest Trends in Palladium Chemistry series. As most of the research in the field of antiviral agents has centered on the use of modified nucleosides that have exhibited promising activity, this book provides an up-to-date reference for both professionals in industry and other interested parties. - Provides synthetic routes for useful nucleoside molecules, information otherwise found only through time-consuming literature searches - Covers metal-mediated and metal-catalyzed cross coupling processes of nucleosides and related compounds - Includes Suzuki-Miyaura, Stille and Sonogashira reactions, as well as C-H bond functionalization - Highlights the growing area of nucleic acid modification and how Pd-mediated coupling reactions can assist
Compiles current tested and proven approaches to synthesize novel nucleoside analogues Featuring contributions from leading synthetic chemists from around the world, this book brings together and describes tested and proven approaches for the chemical synthesis of common families of nucleoside analogues. Readers will learn to create new nucleoside analogues with desired therapeutic properties by using a variety of methods to chemically modify natural nucleosides, including: Changes to the heterocyclic base Modification of substituents at the sugar ring Replacement of the furanose ring by a different carbo- or heterocyclic ring Introduction of conformational restrictions Synthesis of enantiomers Preparation of hydrolitically stable C-nucleosides Chemical Synthesis of Nucleoside Analogues covers all the major classes of nucleosides, including pronucleotides, C-nucleosides, carbanucleosides, and PNA monomers which have shown great promise as starting points for the synthesis of nucleoside analogues. The book also includes experimental procedures for key reactions related to the synthesis of nucleoside analogues, providing a valuable tool for the preparation of a number of different compounds. Throughout the book, chemical schemes and figures help readers better understand the chemical structures of nucleoside analogues and the methods used to synthesize them. Extensive references serve as a gateway to the growing body of original research studies and reviews in the field. Synthetically modified nucleosides have proven their value as therapeutic drugs, in particular as antiviral and antitumor agents. However, many of these nucleoside analogues have undesirable side effects. With Chemical Synthesis of Nucleoside Analogues as their guide, researchers have a new tool for synthesizing a new generation of nucleoside analogues that can be used as therapeutic drugs with fewer unwanted side effects.
This volume is comprised of 18 chapters, covering various aspects of DNA modification and RNA modified bases. It also discusses in detail circular RNA, therapeutic oligonucleotides and their different properties. The chemical nature of DNA, RNA, protein and lipids makes these macromolecules easily modifiable, but they are also susceptible to damage from both endogenous and exogenous agents. Alkylation and oxidation show a potential to disrupt the cellular redox equilibrium and cause cellular damage leading to inflammation and even chronic disease. Furthermore, DNA damage can drive mutagenesis and the resulting DNA sequence changes can induce carcinogenesis and cancer progression. Modified nucleosides can occur as a result of oxidative DNA damage and RNA turnover, and are used as markers for various diseases. To function properly some RNA needs to be chemically modified post-transcriptionally. Dysregulation of the RNA-modification pattern or of the levels of the enzymes that catalyze these modifications alters RNA functionality and can result in complex phenotypes, likely due to defects in protein translation. While modifications are best characterized in noncoding ribonucleic acids like tRNA and rRNA, coding mRNAs have also been found to contain modified nucleosides. This book is a valuable resource, not only for graduate students but also researchers in the fields of molecular medicine and molecular biology.
Edited by one of the main driving forces behind the field's momentous rise in recent years, this one-stop reference is the first comprehensive resource to integrate recent advances. The first part addresses biochemical aspects and applications, the second and third parts are devoted to compounds with therapeutic potential, with the third part focusing on newly introduced anticancer nucleoside drugs. Essential reading for every scientist working in this area.
Analytical Methods for Major and Modified Nucleosides - HPLC, GC, MS, NMR, UV and FT-IR
Modified Nucleosides in Cancer and Normal Metabolism - Methods and Applications
This book spans diverse aspects of modified nucleic acids, from chemical synthesis and spectroscopy to in vivo applications, and highlights studies on chemical modifications of the backbone and nucleobases. Topics discussed include fluorescent pyrimidine and purine analogs, enzymatic approaches to the preparation of modified nucleic acids, emission and electron paramagnetic resonance (EPR) spectroscopy for studying nucleic acid structure and dynamics, non-covalent binding of low- and high-MW ligands to nucleic acids and the design of unnatural base pairs. This unique book addresses new developments and is designed for graduate level and professional research purposes.
The book covers up-to-date information on nucleosides and antiviral chemotherapy contributed by the world experts in the field of nucleoside. This book is the result of a meeting honoring Dr. Jack J. Fox, who was one of the pioneers in nucleoside chemistry and chemotherapy. This book consists of 15 excellent chapters in the area, which include topics from recent synthetic methodologies, nucleoside kinase implicated in chemotherapy and drug design, excellent reviews on antiviral agents, nucleoside metabolism/mode of action in parasites, new compounds under clinical and pre-clinical trials, IMPDH inhibitors to review on nucleoside prodrugs.
This volume is a timely and comprehensive description of the many facets of DNA and RNA modification-editing processes and to some extent repair mechanisms. Each chapter offers fundamental principles as well as up to date information on recent advances in the field (up to end 2008). They ended by a shortconclusion and future prospect' section and
This book comprises the lectures presented at the workshop Modified Nuc1eosides and Cancer held from 28 September to 2 October, 1981 in Freiburg, West Germany. The workshop was organized by Gisela Nass and sponsored by the Deutsche Forschungsgemeinschaft. The purpose of the workshop was to cover the varied analytical methods for quantitative and qualitative determination of modified nucleosides and their metabolism including bio synthesis, all in relation to the function of these compounds in the origin and growth of cancer cells. The potential signi ficance of measuring modified nucleosides in body fluids for tumor diagnosis in humans received particular attention. Various fields of research which have previously been segregat ed are thus unified in this volume. Emphasis was also placed on the fact that modified nucleosides are constituents of the genetic material, the desoxyribonucleic> acid, on the one hand, and of the transfer ribonucleic acids on the other hand, with the latter macromolecules participating not only in the translation of genetic information into protein, but also in many regulatory processes in all single- and multi-, cellular organisms including man.