Download Free Modified Nanomaterials For Environmental Applications Book in PDF and EPUB Free Download. You can read online Modified Nanomaterials For Environmental Applications and write the review.

This book focuses on the electrochemical and nanostructural properties of new photoanode/electrolyte combinations used in the development of novel surface-modified nanomaterials for environmental applications. As water treatment is rapidly becoming a global challenge due to the increasing complexity and number of the various pollutants present, the book explores fundamental issues relating to environmental applications of nanomaterials. It addresses relevant topics ranging from electrochemical synthesis and characterization, to applications of photoanodes in corrosion prevention and biosensors for wastewater treatment. Featuring up-to-date experimental results on nanomaterials for detection of pharmaceuticals and heavy metals in wastewater, this contributed volume is useful to electrochemical researchers, materials scientists, and chemical and civil engineers interested in advanced photoelectrochemical research for environmental applications.
Surface Modified Nanomaterials for Applications in Catalysis: Fundamentals, Methods and Applications provides an overview of the different state-of-the-art surface modification methods of nanomaterials and their commercial applications. The main objective of this book is to comprehensively cover the modification of nanomaterial and their fabrication, including different techniques and discussions of present and emerging commercial applications. The book addresses fundamental chemistry concepts as applied to the modification of nanomaterials for applications in energy, catalysis, water remediation, sensors, and more. Characterization and fabrication methodologies are reviewed, along with the challenges of up-scaling of processes for commercial applications. This book is suitable for academics and practitioners working in materials science, engineering, nanotechnology, green chemistry and chemical engineering. Provides an overview of the basic principles of surface modification of nanomaterials Reviews useful fabrication and characterization methodologies for key applications Addresses surface modified nanomaterials for applications in catalysis, energy, sensor, environment, and more
Nanomaterials for Environmental Applications offers a comprehensive review of the latest advances in nanomaterials-based technologies for the treatment of emerging contaminants in wastewater. It describes the latest developments in the synthesis protocols, including the synthesis of different kinds of nanostructure materials using various physical and chemical methods. Features Discusses the synthesis and characterization of important nanomaterials such as carbon nanostructures, metal and metal oxide nanostructures, polymer nanostructures, and smart 1D-–3D nanomaterials Presents the latest techniques used in the characterization of nanomaterials Covers environmental applications including the remediation of pollutants in wastewater and water purification and disinfection Examines the sources, fate, transport, and ecotoxicology of nanomaterials in the environment. Aimed at researchers and industry professionals, this work will be of interest to chemical, environmental, and materials engineers concerned with the application of advanced materials for environmental and water remediation. Mohamed Abou El-Fetouh Barakat is a Professor of Environmental Sciences at both King Abdulaziz University (KAU)- Saudi Arabia, and Central Metallurgical R&D Institute (CMRDI)- Egypt. He is highly qualified in the fields of industrial waste management and pollution control as well as catalysis and nanotechnology. His experience includes academic research works in Japan, Germany, the United States and Saudi Arabia, as well as initiating and leading industrial research projects in Egypt jointly with the United States. Rajeev Kumar is an Associate Professor in the Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia. His research activities are in the areas of wastewater treatment and materials science. He studies the adsorption and photocatalytic properties of nanomaterials for the removal of contaminants from wastewater.
Environmental devices help in monitoring the collection of one or more measurements that are used to access the status of an environment. Today, environmental monitoring and analytical methods are among the most rapidly developing branches of analysis. The functionalization of nanomaterials in the field of environmental science has increasing importance with regards to the fabrication of devices. Functionalized nanomaterials reformulate new materials and advanced characteristics for improved application in comparison to old fashion materials and open an opportunity for the development of devices for introducing new technology and techniques for monitoring environmental challenges. The monitoring of these environmental challenges in advances have direct impact on health and sustainability. Functionalized nanomaterials have different mechanical, absorption, optical or electrical properties than original nanomaterials. In fact, major utilization of nanomaterials occurs in their functionalized forms, which are very different from the parent material. This handbook provides an overview of the different state-of-the-art materials, devices and environmental applications of functionalized nanomaterials. In addition, the information offers a platform for ongoing research in the field of environmental science and device fabrication. The main objective of this book is to cover the major areas focusing on the functionalization of nanomaterials, device fabrication along with different techniques and environmental applications of functionalized nanomaterials-based devices. This is an important reference source for materials scientists, engineers and environmental scientsts who are looking to increase their understanding of how functionalized nanomaterial-based devices are being used for environmental monitoring applications. Helps the reader to understand the basic principles of functionalization of nanomaterials Highlights fabrication and characterization methods for functionalized nanomaterials-based environmental monitoring devices Assesses the major challenges of creating devices using functionalized nanomaterials on a mass scale
Nanotechnology is a diverse science that has brought about new applications in fields such as colloidal science, device physics and supra molecular chemistry. Environmental pollution treatment by nanomaterials is an emerging application of nanotechnology. It is gaining importance because of the increased environmental challenges due to the impact of modern industrial activities. Industrial activity involves the production and use of various toxic organic and inorganic chemicals which pollute nearby water streams, indirectly influencing aquatic and human life. Thus, there is a need to protect the environment through the development of new technologies and by enacting awareness drives for environmental sustainability. This volume summarizes cutting-edge research on nanomaterial utilization for environmental challenges. Chapters introduce readers to the concepts of environmental protection, sustainability and monitoring. Readers will also learn about technologies used for keeping the environment safer, including ion exchangers, metallic oxide complexes, nanocomposite materials, porous membranes and nanocatalysts. This volume is intended to be an introductory reference for students and researchers undertaking advanced courses in materials science, environmental science and engineering, giving readers a glimpse into the fascinating world of nanotechnology.
Green chemistry is required for ecofriendly treatment of effluents and pollutants; hence, sustainable development. Application of nanomaterials such as TiO2 and ZnO for photodegradation of organic pollutants is well-known. However, there are some drawbacks in their application, e.g. high agglomeration, low dispersion in medium, and their activity only under UV irradiation. This book covers surface modification of metal oxide doped TiO2 and ZnO nanomaterials synthesized under mild hydrothermal conditions. The materials have been arranged in such a way to be easily understandable for students and researchers. A comprehensive illustrated examples have been provided regarding to characterization and application of the surface modified nanomaterials applicable in the field of environmental engineering and science.
Environmental Applications of Carbon Nanomaterials-Based Devices Explore this insightful treatment of the function and fabrication of high-performance devices for environmental applications Environmental Applications of Carbon Nanomaterials-Based Devices delivers an overview of state-of-the-art technology in functionalized carbon nanomaterials-based devices for environmental applications. The book provides a powerful foundation, based in materials science, on functionalized carbon nanomaterials in general, and environmental science and device fabrication in particular. The book focuses on the chemical and physical methods of functionalization of carbon nanomaterials and the technology of device fabrication, including lab-on-a-chip approaches and applications such as wastewater purification and gas sensing. It provides readers with a thorough understanding of effective environmental remediation techniques performed with carbon nanomaterials-based devices. In addition to topics such as cross-linked graphene oxide membranes assembled with graphene oxide nanosheets, free-standing graphene oxide-chitin nanocrystal composite membranes for dye adsorption and oil/water separation, and in-situ grown covalent organic framework nanosheets on graphene for membrane-based dye/salt separation, readers will also benefit from the inclusion of: A thorough introduction to charge-gated ion transport through polyelectrolyte intercalated amine reduced graphene oxide membranes An exploration of hydrotalcite/graphene oxide hybrid nanosheets functionalized nanofiltration membrane for desalination A discussion of the incorporation of attapulgite nanorods into graphene oxide nanofiltration membranes for efficient dyes wastewater treatment An examination of attapulgite nanofibers and graphene oxide composite membranes for high-performance molecular separation Perfect for materials scientists, analytical chemists, and environmental chemists, Environmental Applications of Carbon Nanomaterials-Based Devices will also earn a place in the libraries of sensor developers seeking a one-stop resource for high-performance devices and sensors useful for environmental applications.
Carbon Nanomaterials for Agri-food and Environmental Applications discusses the characterization, processing and applications of carbon-based nanostructured materials in the agricultural and environmental sectors. Sections discuss the synthesis and characterization of carbon nanotubes, the technological developments in environmental applications of carbon-based nanomaterials, and agri-food applications. The book also covers the toxic effects of engineered carbon nanoparticles on the environment, and in plants and animals. Finally, quality control and risk management are addressed to assess health and environmental risks. This is an applicable book for graduate students, researchers and those in industrial sectors of science and technology who want to learn more about carbon nanomaterials. Compares a range of carbon-based nanomaterials, showing how they are used for a range of agricultural and environmental applications Discusses the challenges and toxicity of different types of carbon-based nanomaterials for environmental and agricultural applications Explores when different classes of nanomaterial should be used in different environments
Functional and structural nanomaterials are emerging materials that display interesting physical and chemical properties because of their size and surface area to volume ratio. Applications for these materials include uses in removing pollutants from the environment. Looking at the current state-of-the-art as well as future trends in the use of nanomaterials for tackling environmental issues this book covers everything from the synthesis and characterisation of these materials to their use in the removal of specific contaminants. Functional Hybrid Nanomaterials for Environmental Remediation is a useful resource both for nanomaterial scientists interested in the real world application of hybrid nanomaterials and for environmental chemists and environmental engineers interested in novel materials for environmental remediation.
Smart nanomaterials are making their presence ever so noticeable in areas like environmental protection and remediation, as well as in many other fields of study. The international team of expert researchers behind Smart Nanomaterials for Environmental Applications aims to spotlight the latest, rapid developments in the design and manipulation of materials at the nanoscale and to concisely present information regarding their novel methods of utilization for the safeguard of the environment, while at the same time apprising readers of challenges encountered and anticipated prospects. The volume illustrates state-of-the-art, actionable content, which is relevant and extremely valuable for those who want to apply this up-to-date knowledge in industry too. Offers fundamentals of smart nanomaterials, including characterization, design, and fabrication methods Includes advanced information on fine-tuning different morphologies of smart nanomaterials Features three case studies on real-life applications of smart nanomaterials