Download Free Modifications In Biomacromolecules Book in PDF and EPUB Free Download. You can read online Modifications In Biomacromolecules and write the review.

Surface Modifications of Nanocellulose: Strategies, Methods, and Applications establishes the basic framework of nanocellulose. This book systemically summarizes the strategy and protocols of surface modifications on nanocellulose and comprehensively analyzes the relationship between surface modifications and their functional applications. It provides a one-stop reference for researchers engaged in biopolymer research with a commitment to the development of highly-valued functional polymers, nanomaterials, and green chemistry. - Systemically summarizes the strategy and protocols of surface modifications on nanocellulose - Includes a database for the modified species as a reference book for surface modification on nanocellulose - Illustrates the relationship between modification and applications of nanocellulose - Provides inspiration for the development of potential functional modification in this field
The book provides a unique collection of 15 contributions by 15 internationally recognized scientists performing intensive research activity on the preparation and characterization of complex and multiphase materials based on macromolecules as well as on the evaluation and simulation of structure/properties relations. The topic is assuming a general increasing importance as providing a highly sustainable and modern approach to the present and future development of the important area of materials science and technology. The scientific route along the successive contributions goes from the controlled preparation of functional MM both by innovative polymerization reactions and preformed polymers modification (intramacromolecular complexity), to their combination with other MMs and materials to give blends and composites where new properties are conveniently achieved by morphologic complexity. The synergic behaviour of the different components in these last is obtained by reactive processing producing the necessary interfacial adhesion. Even if most examples deal with man-made MMs, biopolymers are also included. The various chapters provide in most cases an exhaustive fundamental description assisted by an up- to-date and broad list of relevant references The book is therefore an excellent informative and formative instrument for those involved in complex materials preparation and application in research and industry.
Based on a fundamental understanding of the interaction between bacteria and materials, this timely volume emphasizes the latest research in the antimicrobial interfacial design and provides an invaluable blueprint for improving antimicrobial performance on devices and products. Antimicrobial Coatings and Modifications targets reduction of microbial accumulation on biomedical and industrial materials through changing interfacial characteristics. Applying a viable antimicrobial coating or modification to resist alarming threats is a highly demanding requirement for many medical and engineering applications. Many contemporary books in the area of antimicrobial solution focus on applying antimicrobial agents or materials that can kill bacteria. The volume pays more attention to eliminating bacterial contamination and biofilm formation through surface characteristics with minimized bacterial resistance and environmental impact.
Advanced Green Materials: Fabrication, Characterization and Applications of Biopolymers and Biocomposites looks at their extraction, purification, modification, and processing for various industrial, biomedical, pharmaceutical, and construction applications. The book comprehensively summarizes recent technical research accomplishments in natural materials and discusses various aspects of natural materials from a chemistry/engineering point of view. The book is unique with contributions from experts working on hybrid biopolymers and bio- composites, bioactive and biodegradable materials, bio-inert polymers and composites, natural polymer and composites, and metallic natural materials. The book will be a useful reference for scientists, academicians, research scholars, and biotechnologists. Advanced biocomposite materials continue to become increasingly popular and important for a broad range of different science and engineering applications. In the race to exploit the unique mechanical, thermal, and electrical properties of these materials, researchers must also address new challenges to predict, understand, and manage the potentially adverse effects they could have on the environment and human lives. The book describes recent developments and applications of biopolymers and biocomposites for applications in various industrial fields. Chapters include original research and the latest reviews in similar fields. Biopolymers and biocomposites occupy an exceptional position in the exciting new world of novel biomaterials. Considering their sustainability, non-toxic properties, and their ability to have tailored properties and functions, they should be considered as a smart candidate in the advancement of biomaterials technology. - Covers all types of biopolymers and advanced industrial applications, from packaging to biomedical therapeutics - Discusses the shift from research to industrial large-scale application of biopolymers and biocomposites - Emphasizes new strategic trends, such as bio-based and biodegradable additives for bioplastics, PHAs, new lignin-based biopolymers, and new polymers based on terpenes and biosensor applications
The third edition of a bestseller, this comprehensive reference presents the latest polymer developments and most up-to-date applications of polymeric biomaterials in medicine. Expanded into two volumes, the first volume covers the structure and properties of synthetic and natural polymers as well as bioresorbable hybrid membranes, drug delivery systems, cell bioassay systems, and electrospinning for regenerative medicine. This substantially larger resource includes state-of-the-art research and successful breakthroughs in applications that have occurred in the last ten years.
A guide to modifying and functionalizing the surfaces of polymers Surface Modification of Polymers is an essential guide to the myriad methods that can be employed to modify and functionalize the surfaces of polymers. The functionalization of polymer surfaces is often required for applications in sensors, membranes, medicinal devices, and others. The contributors?noted experts on the topic?describe the polymer surface in detail and discuss the internal and external factors that influence surface properties. This comprehensive guide to the most important methods for the introduction of new functionalities is an authoritative resource for everyone working in the field. This book explores many applications, including the plasma polymerization technique, organic surface functionalization by initiated chemical vapor deposition, photoinduced functionalization on polymer surfaces, functionalization of polymers by hydrolysis, aminolysis, reduction, oxidation, surface modification of nanoparticles, and many more. Inside, readers will find information on various applications in the biomedical field, food science, and membrane science. This important book: -Offers a range of polymer functionalization methods for biomedical applications, water filtration membranes, and food science -Contains discussions of the key surface modification methods, including plasma and chemical techniques, as well as applications for nanotechnology, environmental filtration, food science, and biomedicine -Includes contributions from a team of international renowned experts Written for polymer chemists, materials scientists, plasma physicists, analytical chemists, surface physicists, and surface chemists, Surface Modification of Polymers offers a comprehensive and application-oriented review of the important functionalization methods with a special focus on biomedical applications, membrane science, and food science.
Biomaterials have had a major impact on the practice of contemporary medicine and patient care. Growing into a major interdisciplinary effort involving chemists, biologists, engineers, and physicians, biomaterials development has enabled the creation of high-quality devices, implants, and drug carriers with greater biocompatibility and biofunctiona
This book is organized into 12 important chapters that focus on the progress made by metal-based drugs as anticancer, antibacterial, antiviral, anti-inflammatory, and anti-neurodegenerative agents, as well as highlights the application areas of newly discovered metallodrugs. It can prove beneficial for researchers, investigators and scientists whose work involves inorganic and coordination chemistry, medical science, pharmacy, biotechnology and biomedical engineering.
This book focuses on the fundamental phenomena at nanoscale. It covers synthesis, properties, characterization and computer modelling of nanomaterials, nanotechnologies, bionanotechnology, involving nanodevices. Further topics are imaging, measuring, modeling and manipulating of low dimensional matter at nanoscale. The topics covered in the book are of vital importance in a wide range of modern and emerging technologies employed or to be employed in most industries, communication, healthcare, energy, conservation , biology, medical science, food, environment, and education, and consequently have great impact on our society.
This book provides an integrated treatment of the structure and function of nucleic acids, proteins, and glycans, including thorough coverage of relevant computational biochemistry. The text begins with an introduction to the biomacromolecules, followed by discussion of methods of isolation and purification, physiochemical and biochemical properties, and structural characteristics. The next section of the book deals with sequence analysis, analysis of conformation using spectroscopy, chemical synthesis, and computational approaches. The following chapters discuss biomolecular interactions, enzyme action, gene transmission, signal transduction, and biomacromolecular informatics. The author concludes with presenting the latest findings in genomics, proteomics, glycomics, and biomacromolecular evolution. This text is an invaluable resource for research professionals wishing to move into genomics, proteomics, and glycomics research. It is also useful for students in biochemistry, molecular biology, bioengineering, biotechnology, and bioinformatics.