Download Free Modern Semiconductor Devices For Integrated Circuits Book in PDF and EPUB Free Download. You can read online Modern Semiconductor Devices For Integrated Circuits and write the review.

Modern Semiconductor Devices for Integrated Circuits, First Edition introduces readers to the world of modern semiconductor devices with an emphasis on integrated circuit applications. KEY TOPICS Electrons and Holes in Semiconductors; Motion and Recombination of Electrons and Holes; Device Fabrication Technology; PN and Metal Semiconductor Junctions; MOS Capacitor; MOS Transistor; MOSFETs in ICs Scaling, Leakage, and Other Topics; Bipolar Transistor. MARKET Written by an experienced teacher, researcher, and expert in industry practices, this succinct and forward-looking text is appropriate for anyone interested in semiconductor devices for integrated curcuits, and serves as a suitable reference text for practicing engineers. "
A thorough examination of the present and future of semiconductor device technology Engineers continue to develop new electronic semiconductor devices that are almost exponentially smaller, faster, and more efficient than their immediate predecessors. Theory of Modern Electronic Semiconductor Devices endeavors to provide an up-to-date, extended discussion of the most important emerging devices and trends in semiconductor technology, setting the pace for the next generation of the discipline's literature. Kevin Brennan and April Brown focus on three increasingly important areas: telecommunications, quantum structures, and challenges and alternatives to CMOS technology. Specifically, the text examines the behavior of heterostructure devices for communications systems, quantum phenomena that appear in miniaturized structures and new nanoelectronic device types that exploit these effects, the challenges faced by continued miniaturization of CMOS devices, and futuristic alternatives. Device structures on the commercial and research levels analyzed in detail include: * Heterostructure field effect transistors * Bipolar and CMOS transistors * Resonant tunneling diodes * Real space transfer transistors * Quantum dot cellular automata * Single electron transistors The book contains many homework exercises at the end of each chapter, and a solution manual can be obtained for instructors. Emphasizing the development of new technology, Theory of Modern Electronic Semiconductor Devices is an ideal companion to electrical and computer engineering graduate level courses and an essential reference for semiconductor device engineers.
Across 15 chapters, Semiconductor Devices covers the theory and application of discrete semiconductor devices including various types of diodes, bipolar junction transistors, JFETs, MOSFETs and IGBTs. Applications include rectifying, clipping, clamping, switching, small signal amplifiers and followers, and class A, B and D power amplifiers. Focusing on practical aspects of analysis and design, interpretations of device data sheets are integrated throughout the chapters. Computer simulations of circuit responses are included as well. Each chapter features a set of learning objectives, numerous sample problems, and a variety of exercises designed to hone and test circuit design and analysis skills. A companion laboratory manual is available. This is the print version of the on-line OER.
Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond provides a modern treatise on compact models for circuit computer-aided design (CAD). Written by an author with more than 25 years of industry experience in semiconductor processes, devices, and circuit CAD, and more than 10 years of academic experience in teaching compact modeling courses, this first-of-its-kind book on compact SPICE models for very-large-scale-integrated (VLSI) chip design offers a balanced presentation of compact modeling crucial for addressing current modeling challenges and understanding new models for emerging devices. Starting from basic semiconductor physics and covering state-of-the-art device regimes from conventional micron to nanometer, this text: Presents industry standard models for bipolar-junction transistors (BJTs), metal-oxide-semiconductor (MOS) field-effect-transistors (FETs), FinFETs, and tunnel field-effect transistors (TFETs), along with statistical MOS models Discusses the major issue of process variability, which severely impacts device and circuit performance in advanced technologies and requires statistical compact models Promotes further research of the evolution and development of compact models for VLSI circuit design and analysis Supplies fundamental and practical knowledge necessary for efficient integrated circuit (IC) design using nanoscale devices Includes exercise problems at the end of each chapter and extensive references at the end of the book Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond is intended for senior undergraduate and graduate courses in electrical and electronics engineering as well as for researchers and practitioners working in the area of electron devices. However, even those unfamiliar with semiconductor physics gain a solid grasp of compact modeling concepts from this book.
Funktionstests an integrierten Schaltungen sind für deren Zuverlässigkeit von herausragender Bedeutung. Erstmals werden in diesem Werk die speziellen Präparationstechniken für die Fehleranalyse beschrieben. Ausgehend von den theoretischen Grundlagen erläutert der Autor in praxisnahem Stil die verschiedenen Techniken, die das Zurückverfolgen von Ausfällen ermöglichen.
A transistor-level, design-intensive overview of high speed and high frequency monolithic integrated circuits for wireless and broadband systems from 2 GHz to 200 GHz, this comprehensive text covers high-speed, RF, mm-wave, and optical fibre circuits using nanoscale CMOS, SiGe BiCMOS, and III-V technologies. Step-by-step design methodologies, end-of chapter problems, and practical simulation and design projects are provided, making this an ideal resource for senior undergraduate and graduate courses in circuit design. With an emphasis on device-circuit topology interaction and optimization, it gives circuit designers and students alike an in-depth understanding of device structures and process limitations affecting circuit performance.
This is the book version of a special issue of the International Journal of High Speed Electronics and Systems, reviewing recent work in the field of compound semiconductor integrated circuits. There are fourteen invited papers covering a wide range of applications, frequencies and materials. These papers deal with digital, analog, microwave and millimeter-wave technologies, devices and integrated circuits for wireline fiber-optic lightwave transmissions, and wireless radio-frequency microwave and millimeter-wave communications. In each case, the market is young and experiencing rapid growth for both commercial and millitary applications. Many new semiconductor technologies compete for these new markets, leading to an alphabet soup of semiconductor materials described in these papers. Contents: Present and Future of High-Speed Compound Semiconductor IC's (T Otsuji); Transforming MMIC (E J Martinez); Distributed Amplifier for Fiber-Optic Communication Systems (H Shigematsu et al.); Microwave GaN-Based Power Transistors on Large-Scale Silicon Wafers (S Manohar et al.); Radiation Effects in High Speed III-V Integrated Circuits (T R Weatherford); Radiation Effects in III-V Semiconductor Electronics (B D Weaver et al.); Reliability and Radiation Hardness of Compound Semiconductors (S A Kayali & A H Johnston); and other papers. Readership: Engineers, scientists and graduate students working on high speed electronics and systems, and in the area of compound semiconductor integrated circuits.
The invention of semiconductor devices is a fairly recent one, considering classical time scales in human life. The bipolar transistor was announced in 1947, and the MOS transistor, in a practically usable manner, was demonstrated in 1960. From these beginnings the semiconductor device field has grown rapidly. The first integrated circuits, which contained just a few devices, became commercially available in the early 1960s. Immediately thereafter an evolution has taken place so that today, less than 25 years later, the manufacture of integrated circuits with over 400.000 devices per single chip is possible. Coincident with the growth in semiconductor device development, the literature concerning semiconductor device and technology issues has literally exploded. In the last decade about 50.000 papers have been published on these subjects. The advent of so called Very-Large-Scale-Integration (VLSI) has certainly revealed the need for a better understanding of basic device behavior. The miniaturization of the single transistor, which is the major prerequisite for VLSI, nearly led to a breakdown of the classical models of semiconductor devices.
"This dynamic text applies physics concepts and equations to practical, real-world applications of semiconductor device theory"-- Provided by publisher.