Download Free Modern Power Engineering Book in PDF and EPUB Free Download. You can read online Modern Power Engineering and write the review.

Most textbooks that deal with the power analysis of electrical engineering power systems focus on generation or distribution systems. Filling a gap in the literature, Modern Power System Analysis, Second Edition introduces readers to electric power systems, with an emphasis on key topics in modern power transmission engineering. Throughout, the boo
Modern Power System Planning covers the area of planning in the electrical supply industry, from power station generation to transmission and distribution. It will enable the practising engineer to implement the increasingly sophisticated and most modern techniques of planning. The text offers a clear, detailed treatment of this subject with each chapter building on the material of the previous one. The reader is familiarized with mathematical and statistical theory before the applications are introduced, and the material in each chapter is cross-referenced for clarity and to reinforce the concepts presented. The authors have taken a unified approach to reliability and planning analysis. Included in its coverage are the definition of general reliability indices, plant maintenance scheduling, generation system and transmission network planning, and forecasting techniques and applications. The use of optimization techniques for these processes is explored in depth. In every chapter there are detailed case studies based on the authors' practical experience and research. These are drawn from actual power system planning projects, thus placing the work directly into the context of current practice in industry. Thus, the reader is provided with a text giving a unique breadth and depth of education in this subject.
Decision Making Applications in Modern Power Systems presents an enhanced decision-making framework for power systems. Designed as an introduction to enhanced electricity system analysis using decision-making tools, it provides an overview of the different elements, levels and actors involved within an integrated framework for decision-making in the power sector. In addition, it presents a state-of-play on current energy systems, strategies, alternatives, viewpoints and priorities in support of decision-making in the electric power sector, including discussions of energy storage and smart grids. As a practical training guide on theoretical developments and the application of advanced methods for practical electrical energy engineering problems, this reference is ideal for use in establishing medium-term and long-term strategic plans for the electric power and energy sectors. - Provides panoramic coverage of state-of-the-art energy systems, strategies and priorities in support of electrical power decision-making - Introduces innovative research outcomes, programs, algorithms and approaches to address challenges in understanding, creating and managing complex techno-socio-economic engineering systems - Includes practical training on theoretical developments and the application of advanced methods for realistic electrical energy engineering problems
Converter-Based Dynamics and Control of Modern Power Systems addresses the ongoing changes and challenges in rotating masses of synchronous generators, which are transforming dynamics of the electrical system. These changes make it more important to consider and understand the role of power electronic systems and their characteristics in shaping the subtleties of the grid and this book fills that knowledge gap. Balancing theory, discussion, diagrams, mathematics, and data, this reference provides the information needed to acquire a thorough overview of resilience issues and frequency definition and estimation in modern power systems. This book offers an overview of classical power system dynamics and identifies ways of establishing future challenges and how they can be considered at a global level to overcome potential problems. The book is designed to prepare future engineers for operating a system that will be driven by electronics and less by electromechanical systems. - Includes theory on the emerging topic of electrical grids based on power electronics - Creates a good bridge between traditional theory and modern theory to support researchers and engineers - Links the two fields of power systems and power electronics in electrical engineering
Uncertainties in Modern Power Systems combines several aspects of uncertainty management in power systems at the planning and operation stages within an integrated framework. This book provides the state-of-the-art in electric network planning, including time-scales, reliability, quality, optimal allocation of compensators and distributed generators, mathematical formulation, and search algorithms. The book introduces innovative research outcomes, programs, algorithms, and approaches that consolidate the present status and future opportunities and challenges of power systems. The book also offers a comprehensive description of the overall process in terms of understanding, creating, data gathering, and managing complex electrical engineering applications with uncertainties. This reference is useful for researchers, engineers, and operators in power distribution systems. - Includes innovative research outcomes, programs, algorithms, and approaches that consolidate current status and future of modern power systems - Discusses how uncertainties will impact on the performance of power systems - Offers solutions to significant challenges in power systems planning to achieve the best operational performance of the different electric power sectors
Power Quality in Modern Power Systems presents an overview of power quality problems in electrical power systems, for identifying pitfalls and applying the fundamental concepts for tackling and maintaining the electrical power quality standards in power systems. It covers the recent trends and emerging topics of power quality in large scale renewable energy integration, electric vehicle charging stations, voltage control in active distribution network and solutions to integrate large scale renewable energy into the electric grid with several case studies and real-time examples for power quality assessments and mitigations measures. This book will be a practical guide for graduate and post graduate students of electrical engineering, engineering professionals, researchers and consultants working in the area of power quality. - Explains the power quality characteristics through suitable real time measurements and simulation examples - Explanations for harmonics with various real time measurements are included - Simulation of various power quality events using PSCAD and MATLAB software - PQ disturbance detection and classification through advanced signal processing and machine learning tools - Overview about power quality problems associated with renewable energy integration, electric vehicle supply equipment's, residential systems using several case studies
This book presents select proceedings of the Electric Power and Renewable Energy Conference 2020 (EPREC 2020). This book provides rigorous discussions, case studies, and recent developments in emerging areas of control systems, especially, load frequency control, wide-area monitoring, control & instrumentation, optimization, intelligent control, energy management system, SCADA systems, etc. The contents of this book will be useful to researchers and professionals interested in control theory and its applications to power grids and systems. The book can also be used by policy makers and power engineers involved in power generation and distribution.
Most traditional power systems textbooks focus on high-voltage transmission. However, the majority of power engineers work in urban factories, buildings, or industries where power comes from utility companies or is self-generated. Introduction to Electrical Power and Power Electronics is the first book of its kind to cover the entire scope of electrical power and power electronics systems in one volume—with a focus on topics that are directly relevant in power engineers’ daily work. Learn How Electrical Power Is Generated, Distributed, and Utilized Composed of 17 chapters, the book is organized into two parts. The first part introduces aspects of electrical power that most power engineers are involved in during their careers, including the distribution of power to load equipment such as motors via step-down transformers, cables, circuit breakers, relays, and fuses. For engineers working with standalone power plants, it also tackles generators. The book discusses how to design and operate systems for economic use of power and covers the use of batteries in greater depth than typically found in traditional power system texts. Understand How Power Electronics Work in Modern Systems The second part delves into power electronics switches, as well as the DC–DC converters, AC–DC–AC converters, and frequency converters used in variable-frequency motor drives. It also discusses quality-of-power issues in modern power systems with many large power electronics loads. A chapter on power converter cooling presents important interdisciplinary design topics. Draw on the Author’s Extensive Industry and Teaching Experience This timely book draws on the author’s 30 years of work experience at General Electric, Lockheed Martin, and Westinghouse Electric and 15 years of teaching electrical power at the U.S. Merchant Marine Academy. Designed for a one-semester or two-quarter course in electrical power and power electronics, it is also ideal for a refresher course or as a one-stop reference for industry professionals.
This highly experienced author sets out to build a bridge between two inter-disciplinary power engineering practices. The book looks into two major fields used in modern power systems: intelligent systems and the signal processing. The intelligent systems section comprises fuzzy logic, neural network and support vector machine. The author looks at relevant theories on the topics without assuming much particular background. Following the theoretical basics, he studies their applications in various problems in power engineering, like, load forecasting, phase balancing, or disturbance analysis.