Download Free Modern Methods In Protein And Nucleic Acid Research Book in PDF and EPUB Free Download. You can read online Modern Methods In Protein And Nucleic Acid Research and write the review.

No detailed description available for "Modern Methods in Protein- and Nucleic Acid Research".
This book spans diverse aspects of modified nucleic acids, from chemical synthesis and spectroscopy to in vivo applications, and highlights studies on chemical modifications of the backbone and nucleobases. Topics discussed include fluorescent pyrimidine and purine analogs, enzymatic approaches to the preparation of modified nucleic acids, emission and electron paramagnetic resonance (EPR) spectroscopy for studying nucleic acid structure and dynamics, non-covalent binding of low- and high-MW ligands to nucleic acids and the design of unnatural base pairs. This unique book addresses new developments and is designed for graduate level and professional research purposes.
The first of its kind, Introduction to Biophysical Methods for Protein and Nucleic Acid Research serves as a text for the experienced researcher and student requiring an introduction to the field. Each chapter presents a description of the physical basis of the method, the type of information that may be obtained with the method, how data should be analyzed and interpreted and, where appropriate, practical tips about procedures and equipment. Key Features* Modern Use of Mass Spectroscopy* NMR Spectroscopy* Molecular Modeling and Graphics* Macintosh and DOS/Windows 3.x disks
Probabilistic models are becoming increasingly important in analysing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analysing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it aims to be accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time present the state-of-the-art in this new and highly important field.
Diagnostic Molecular Biology, Second Edition describes the fundamentals of molecular biology in a clear, concise manner with each technique explained within its conceptual framework and current applications of clinical laboratory techniques comprehensively covered. This targeted approach covers the principles of molecular biology, including basic knowledge of nucleic acids, proteins and chromosomes; the basic techniques and instrumentations commonly used in the field of molecular biology, including detailed procedures and explanations; and the applications of the principles and techniques currently employed in the clinical laboratory. Topics such as whole exome sequencing, whole genome sequencing, RNA-seq, and ChIP-seq round out the discussion. Fully updated, this new edition adds recent advances in the detection of respiratory virus infections in humans, like influenza, RSV, hAdV, hRV but also corona. This book expands the discussion on NGS application and its role in future precision medicine. Provides explanations on how techniques are used to diagnosis at the molecular level Explains how to use information technology to communicate and assess results in the lab Enhances our understanding of fundamental molecular biology and places techniques in context Places protocols into context with practical applications Includes extra chapters on respiratory viruses (Corona)
Basic Science Methods for Clinical Researchers addresses the specific challenges faced by clinicians without a conventional science background. The aim of the book is to introduce the reader to core experimental methods commonly used to answer questions in basic science research and to outline their relative strengths and limitations in generating conclusive data. This book will be a vital companion for clinicians undertaking laboratory-based science. It will support clinicians in the pursuit of their academic interests and in making an original contribution to their chosen field. In doing so, it will facilitate the development of tomorrow’s clinician scientists and future leaders in discovery science. Serves as a helpful guide for clinical researchers who lack a conventional science background Organized around research themes pertaining to key biological molecules, from genes, to proteins, cells, and model organisms Features protocols, techniques for troubleshooting common problems, and an explanation of the advantages and limitations of a technique in generating conclusive data Appendices provide resources for practical research methodology, including legal frameworks for using stem cells and animals in the laboratory, ethical considerations, and good laboratory practice (GLP)
Structural Bioinformatics was the first major effort to show the application of the principles and basic knowledge of the larger field of bioinformatics to questions focusing on macromolecular structure, such as the prediction of protein structure and how proteins carry out cellular functions, and how the application of bioinformatics to these life science issues can improve healthcare by accelerating drug discovery and development. Designed primarily as a reference, the first edition nevertheless saw widespread use as a textbook in graduate and undergraduate university courses dealing with the theories and associated algorithms, resources, and tools used in the analysis, prediction, and theoretical underpinnings of DNA, RNA, and proteins. This new edition contains not only thorough updates of the advances in structural bioinformatics since publication of the first edition, but also features eleven new chapters dealing with frontier areas of high scientific impact, including: sampling and search techniques; use of mass spectrometry; genome functional annotation; and much more. Offering detailed coverage for practitioners while remaining accessible to the novice, Structural Bioinformatics, Second Edition is a valuable resource and an excellent textbook for a range of readers in the bioinformatics and advanced biology fields. Praise for the previous edition: "This book is a gold mine of fundamental and practical information in an area not previously well represented in book form." —Biochemistry and Molecular Education "... destined to become a classic reference work for workers at all levels in structural bioinformatics...recommended with great enthusiasm for educators, researchers, and graduate students." —BAMBED "...a useful and timely summary of a rapidly expanding field." —Nature Structural Biology "...a terrific job in this timely creation of a compilation of articles that appropriately addresses this issue." —Briefings in Bioinformatics