Download Free Modern Medical Statistics Book in PDF and EPUB Free Download. You can read online Modern Medical Statistics and write the review.

Statistical science plays an increasingly important role in medical research. Over the last few decades, many new statistical methods have been developed which have particular relevance for medical researchers and, with the appropriate software now easily available, these techniques can be used almost routinely to great effect. These innovative methods include survival analysis, generalized additive models and Bayesian methods. Modern Medical Statistics covers these essential new techniques at an accessible technical level, its main focus being not on the theory but on the effective practical application of these methods in medical research. Modern Medical Statistics is an indispensable practical guide for medical researchers and medical statisticians as well as an ideal text for advanced courses in medical statistics and public health.
Holistic approach to understanding medical statistics This hands-on guide is much more than a basic medical statistics introduction. It equips you with the statistical tools required for evidence-based clinical research. Each chapter provides a clear step-by-step guide to each statistical test with practical instructions on how to generate and interpret the numbers, and present the results as scientific tables or graphs. Showing you how to: analyse data with the help of data set examples (Click here to download datasets) select the correct statistics and report results for publication or presentation understand and critically appraise results reported in the literature Each statistical test is linked to the research question and the type of study design used. There are also checklists for critically appraising the literature and web links to useful internet sites. Clear and concise explanations, combined with plenty of examples and tabulated explanations are based on the authors’ popular medical statistics courses. Critical appraisal guidelines at the end of each chapter help the reader evaluate the statistical data in their particular contexts.
The majority of medical research involves quantitative methods and so it is essential to be able to understand and interpret statistics. This book shows readers how to develop the skills required to critically appraise research evidence effectively, and how to conduct research and communicate their findings.
Explains the purpose of statistical methods in medical studies & analyzes the statistical techniques used by clinical investigators, with special emphasis on studies published in The New England Journal of Medicine. Clarifies fundamental concepts of statistical design & analysis & facilitates the understanding of research results.
Argues that the pace of medical discoveries has slowed in the last twenty-five years due to excessive emphasis on the social and political aspects of health care, and to controversies caused by ethical issues.
The second edition of this volume provides insight and practical illustrations on how modern statistical concepts and regression methods can be applied in medical prediction problems, including diagnostic and prognostic outcomes. Many advances have been made in statistical approaches towards outcome prediction, but a sensible strategy is needed for model development, validation, and updating, such that prediction models can better support medical practice. There is an increasing need for personalized evidence-based medicine that uses an individualized approach to medical decision-making. In this Big Data era, there is expanded access to large volumes of routinely collected data and an increased number of applications for prediction models, such as targeted early detection of disease and individualized approaches to diagnostic testing and treatment. Clinical Prediction Models presents a practical checklist that needs to be considered for development of a valid prediction model. Steps include preliminary considerations such as dealing with missing values; coding of predictors; selection of main effects and interactions for a multivariable model; estimation of model parameters with shrinkage methods and incorporation of external data; evaluation of performance and usefulness; internal validation; and presentation formatting. The text also addresses common issues that make prediction models suboptimal, such as small sample sizes, exaggerated claims, and poor generalizability. The text is primarily intended for clinical epidemiologists and biostatisticians. Including many case studies and publicly available R code and data sets, the book is also appropriate as a textbook for a graduate course on predictive modeling in diagnosis and prognosis. While practical in nature, the book also provides a philosophical perspective on data analysis in medicine that goes beyond predictive modeling. Updates to this new and expanded edition include: • A discussion of Big Data and its implications for the design of prediction models • Machine learning issues • More simulations with missing ‘y’ values • Extended discussion on between-cohort heterogeneity • Description of ShinyApp • Updated LASSO illustration • New case studies
"What is going to happen to me?" Most patients ask this question during a clinical encounter with a health professional. As well as learning what problem they have (diagnosis) and what needs to be done about it (treatment), patients want to know about their future health and wellbeing (prognosis). Prognosis research can provide answers to this question and satisfy the need for individuals to understand the possible outcomes of their condition, with and without treatment. Central to modern medical practise, the topic of prognosis is the basis of decision making in healthcare and policy development. It translates basic and clinical science into practical care for patients and populations. Prognosis Research in Healthcare: Concepts, Methods and Impact provides a comprehensive overview of the field of prognosis and prognosis research and gives a global perspective on how prognosis research and prognostic information can improve the outcomes of healthcare. It details how to design, carry out, analyse and report prognosis studies, and how prognostic information can be the basis for tailored, personalised healthcare. In particular, the book discusses how information about the characteristics of people, their health, and environment can be used to predict an individual's future health. Prognosis Research in Healthcare: Concepts, Methods and Impact, addresses all types of prognosis research and provides a practical step-by-step guide to undertaking and interpreting prognosis research studies, ideal for medical students, health researchers, healthcare professionals and methodologists, as well as for guideline and policy makers in healthcare wishing to learn more about the field of prognosis.
Statistical analysis is ubiquitous in modern medical research. Logistic regression, generalized linear models, random effects models, and Cox's regression all have become commonplace in the medical literature. But while statistical software such as SAS make routine application of these techniques possible, users who are not primarily statisticians must take care to correctly implement the various procedures and correctly interpret the output. Statistical Analysis of Medical Data Using SAS demonstrates how to use SAS to analyze medical data. Each chapter addresses a particular analysis method. The authors briefly describe each procedure, but focus on its SAS implementation and properly interpreting the output. The carefully designed presentation relegates the theoretical details to "Displays," so that the code and results can be explored without interruption. All of the code and data sets used in the book are available for download from either the SAS Web site or www.crcpress.com. Der and Everitt, authors of the best-selling Handbook of Statistical Analyses Using SAS, bring all of their considerable talent and experience to bear in this book. Step-by-step instructions, lucid explanations and clear examples combine to form an outstanding, self-contained guide--suitable for medical researchers and statisticians alike--to using SAS to analyze medical data.
Drawing on the work of the Roundtable on Evidence-Based Medicine, the 2007 IOM Annual Meeting assessed some of the rapidly occurring changes in health care related to new diagnostic and treatment tools, emerging genetic insights, the developments in information technology, and healthcare costs, and discussed the need for a stronger focus on evidence to ensure that the promise of scientific discovery and technological innovation is efficiently captured to provide the right care for the right patient at the right time. As new discoveries continue to expand the universe of medical interventions, treatments, and methods of care, the need for a more systematic approach to evidence development and application becomes increasingly critical. Without better information about the effectiveness of different treatment options, the resulting uncertainty can lead to the delivery of services that may be unnecessary, unproven, or even harmful. Improving the evidence-base for medicine holds great potential to increase the quality and efficiency of medical care. The Annual Meeting, held on October 8, 2007, brought together many of the nation's leading authorities on various aspects of the issues - both challenges and opportunities - to present their perspectives and engage in discussion with the IOM membership.