Download Free Modern Mathematics For The Engineer Book in PDF and EPUB Free Download. You can read online Modern Mathematics For The Engineer and write the review.

This volume and its successor were conceived to advance the level of mathematical sophistication in the engineering community, focusing on material relevant to solving the kinds of problems regularly confronted. Volume One's three-part treatment covers mathematical models, probabilistic problems, and computational considerations. Contributors include Solomon Lefschetz, Richard Courant, and Norbert Wiener. 1956 edition.
A convenient single source for vital mathematical concepts, writtenby engineers and for engineers. Builds a strong foundation in modern applied mathematics forengineering students, and offers them a concise and comprehensivetreatment that summarizes and unifies their mathematical knowledgeusing a system focused on basic concepts rather than exhaustivetheorems and proofs. The authors provide several levels of explanation and exercisesinvolving increasing degrees of mathematical difficulty to recalland develop basic topics such as calculus, determinants, Gaussianelimination, differential equations, and functions of a complexvariable. They include an assortment of examples ranging fromsimple illustrations to highly involved problems as well as anumber of applications that demonstrate the concepts and methodsdiscussed throughout the book. This broad treatment also offers:*Key mathematical tools needed by engineers working incommunications, semiconductor device simulation, and control theory* Concise coverage of fundamental concepts such as sets, mappings,and linearity * Thorough discussion of topics such as distance,inner product, and orthogonality * Essentials of operatorequations, theory of approximations, transform methods, and partialdifferential equationsIt makes an excellent companion to lessgeneral engineering texts and a useful reference for practitioners.
A mathematical and computational education for students, researchers, and practising engineers.
Mathematics for Electrical Engineering and Computing embraces many applications of modern mathematics, such as Boolean Algebra and Sets and Functions, and also teaches both discrete and continuous systems - particularly vital for Digital Signal Processing (DSP). In addition, as most modern engineers are required to study software, material suitable for Software Engineering - set theory, predicate and prepositional calculus, language and graph theory - is fully integrated into the book.Excessive technical detail and language are avoided, recognising that the real requirement for practising engineers is the need to understand the applications of mathematics in everyday engineering contexts. Emphasis is given to an appreciation of the fundamental concepts behind the mathematics, for problem solving and undertaking critical analysis of results, whether using a calculator or a computer.The text is backed up by numerous exercises and worked examples throughout, firmly rooted in engineering practice, ensuring that all mathematical theory introduced is directly relevant to real-world engineering. The book includes introductions to advanced topics such as Fourier analysis, vector calculus and random processes, also making this a suitable introductory text for second year undergraduates of electrical, electronic and computer engineering, undertaking engineering mathematics courses.Dr Attenborough is a former Senior Lecturer in the School of Electrical, Electronic and Information Engineering at South Bank University. She is currently Technical Director of The Webbery - Internet development company, Co. Donegal, Ireland. - Fundamental principles of mathematics introduced and applied in engineering practice, reinforced through over 300 examples directly relevant to real-world engineering
Modern Mathematical Methods for Scientists and Engineers is a modern introduction to basic topics in mathematics at the undergraduate level, with emphasis on explanations and applications to real-life problems. There is also an 'Application' section at the end of each chapter, with topics drawn from a variety of areas, including neural networks, fluid dynamics, and the behavior of 'put' and 'call' options in financial markets. The book presents several modern important and computationally efficient topics, including feedforward neural networks, wavelets, generalized functions, stochastic optimization methods, and numerical methods.A unique and novel feature of the book is the introduction of a recently developed method for solving partial differential equations (PDEs), called the unified transform. PDEs are the mathematical cornerstone for describing an astonishingly wide range of phenomena, from quantum mechanics to ocean waves, to the diffusion of heat in matter and the behavior of financial markets. Despite the efforts of many famous mathematicians, physicists and engineers, the solution of partial differential equations remains a challenge.The unified transform greatly facilitates this task. For example, two and a half centuries after Jean d'Alembert formulated the wave equation and presented a solution for solving a simple problem for this equation, the unified transform derives in a simple manner a generalization of the d'Alembert solution, valid for general boundary value problems. Moreover, two centuries after Joseph Fourier introduced the classical tool of the Fourier series for solving the heat equation, the unified transform constructs a new solution to this ubiquitous PDE, with important analytical and numerical advantages in comparison to the classical solutions. The authors present the unified transform pedagogically, building all the necessary background, including functions of real and of complex variables and the Fourier transform, illustrating the method with numerous examples.Broad in scope, but pedagogical in style and content, the book is an introduction to powerful mathematical concepts and modern tools for students in science and engineering.
Giving an applications-focused introduction to the field of Engineering Mathematics, this book presents the key mathematical concepts that engineers will be expected to know. It is also well suited to maths courses within the physical sciences and applied mathematics. It incorporates many exercises throughout the chapters.
A Student's Guide to the Study, Practice, and Tools of Modern Mathematics provides an accessible introduction to the world of mathematics. It offers tips on how to study and write mathematics as well as how to use various mathematical tools, from LaTeX and Beamer to Mathematica and Maple to MATLAB and R. Along with a color insert, the text include
Covering the main fields of mathematics, this handbook focuses on the methods used for obtaining solutions of various classes of mathematical equations that underlie the mathematical modeling of numerous phenomena and processes in science and technology. The authors describe formulas, methods, equations, and solutions that are frequently used in scientific and engineering applications and present classical as well as newer solution methods for various mathematical equations. The book supplies numerous examples, graphs, figures, and diagrams and contains many results in tabular form, including finite sums and series and exact solutions of differential, integral, and functional equations.
Thirty years ago mathematical, as opposed to applied numerical, computation was difficult to perform and so relatively little used. Three threads changed that: the emergence of the personal computer; the discovery of fiber-optics and the consequent development of the modern internet; and the building of the Three “M’s” Maple, Mathematica and Matlab. We intend to persuade that Mathematica and other similar tools are worth knowing, assuming only that one wishes to be a mathematician, a mathematics educator, a computer scientist, an engineer or scientist, or anyone else who wishes/needs to use mathematics better. We also hope to explain how to become an "experimental mathematician" while learning to be better at proving things. To accomplish this our material is divided into three main chapters followed by a postscript. These cover elementary number theory, calculus of one and several variables, introductory linear algebra, and visualization and interactive geometric computation.
Advanced Mathematics for Engineering Students: The Essential Toolbox provides a concise treatment for applied mathematics. Derived from two semester advanced mathematics courses at the author's university, the book delivers the mathematical foundation needed in an engineering program of study. Other treatments typically provide a thorough but somewhat complicated presentation where students do not appreciate the application. This book focuses on the development of tools to solve most types of mathematical problems that arise in engineering – a "toolbox for the engineer. It provides an important foundation but goes one step further and demonstrates the practical use of new technology for applied analysis with commercial software packages (e.g., algebraic, numerical and statistical). - Delivers a focused and concise treatment on the underlying theory and direct application of mathematical methods so that the reader has a collection of important mathematical tools that are easily understood and ready for application as a practicing engineer - The book material has been derived from class-tested courses presented over many years in applied mathematics for engineering students (all problem sets and exam questions given for the course(s) are included along with a solution manual) - Provides fundamental theory for applied mathematics while also introducing the application of commercial software packages as modern tools for engineering application, including: EXCEL (statistical analysis); MAPLE (symbolic and numeric computing environment); and COMSOL (finite element solver for ordinary and partial differential equations)