Download Free Modern Lens Antennas For Communications Engineering Book in PDF and EPUB Free Download. You can read online Modern Lens Antennas For Communications Engineering and write the review.

The aim of this book is to present the modern design principles and analysis of lens antennas. It gives graduates and RF/Microwave professionals the design insights in order to make full use of lens antennas. Why do we want to write a book in lens antennas? Because this topic has not been thoroughly publicized, its importance is underestimated. As antennas play a key role in communication systems, recent development in wireless communications would indeed benefit from the characteristics of lens antennas: low profile, and low cost etc. The major advantages of lens antennas are narrow beamwidth, high gain, low sidelobes and low noise temperature. Their structures can be more compact and weigh less than horn antennas and parabolic antennas. Lens antennas with their quasi-optical characteristics, also have low loss, particularly at near millimeter and submillimeter wavelengths where they have particular advantages. This book systematically conducts advanced and up-to-date treatment of lens antennas.
A practical book written for engineers who design and use antennas The author has many years of hands on experience designing antennas that were used in such applications as the Venus and Mars missions of NASA The book covers all important topics of modern antenna design for communications Numerical methods will be included but only as much as are needed for practical applications
A complete and rigorous treatment of design principles for modern antennas, including chapters on signal theory and signal processing antennas, radar and polarimetry. Contains significant new material on antennas for mobile communications to supply a complete picture of antennas for modern radiocommunications applications.
Offering a treatment of the theory and practice of modern antenna design and use, the coverage of this text ranges from the fundamentals of electromagnetism and radiation, through axisymmetric systems and arrays, to conclude with polarimetry, signal theory and antenna measurement.
Written by leading experts in the field, this book is a research monograph on Fresnel zone antennas. Readers will find a wealth of novel antenna configurations, first-hand experimental results, and a large number of equations.
This book describes various methods to enhance the directivity of planar antennas, enabling the next generation of high frequency, wireless communication. The authors discuss various applications to the terahertz regime of the electromagnetic spectrum, with an emphasis on gain enhancement mechanisms. The numerical models of these antennas are presented and the analytical results are supported, using commercial simulators. The multilayer substrate microstrip transmission line at terahertz frequency is also explored and a method to obtain the various parameters of this interconnect at high frequency is described. This book will be a valuable resource for anyone needing to explore the terahertz band gap for future wireless communication, in an effort to solve the bandwidth (spectrum scarcity) problem.
This book presents the technology of millimetre waves and Terahertz (THz) antennas. It highlights the importance of moderate and high-gain aperture antennas as key devices for establishing point-to-point and point-to-multipoint radio links for far-field and near-field applications, such as high data-rate communications, intelligent transport, security imaging, exploration and surveillance systems. The book provides a comprehensive overview of the key antenna technologies developed for the mm wave and THz domains, including established ones – such as integrated lens antennas, advanced 2D and 3D horn antennas, transmit and reflect arrays, and Fabry-Perot antennas – as well as emerging metasurface antennas for near-field and far-field applications. It describes the pros and cons of each antenna technology in comparison with other available solutions, a discussion supplemented by practical examples illustrating the step-by-step implementation procedures for each antenna type. The measurement techniques available at these frequency ranges are also presented to close the loop of the antenna development cycle. In closing, the book outlines future trends in various antenna technologies, paving the way for further developments. Presenting content originating from the five-year ESF research networking program ‘Newfocus’ and co-authored by the most active and highly cited research groups in the domain of mm- and sub-mm-wave antenna technologies, the book offers a valuable guide for researchers and engineers in both industry and academia.
An authoritative guide to the latest developments for the design of low-cost smart antennas Traditional smart antenna systems are costly, consume great amounts of power and are bulky size. Low-cost Smart Antennas offers a guide to designing smart antenna systems that are low cost, low power, and compact in size and can be applied to satellite communications, radar and mobile communications. The authors — noted experts on the topic — provide introductions to the fundamental concepts of antennas, array antennas and smart antennas. The book fills a gap in the literature by presenting the design techniques of low-cost radio frequency (RF) smart antennas as well as approaches for implementing the hardware of the antenna and the beamforming network (BFN). A comprehensive and accessible book, Low-cost Smart Antennas not only presents an up-to-date review of the topic but includes illustrative case studies that contain in-depth explorations of the theory and technology of smart antennas. While other resources highlight the software (signal processing algorithms), this book is unique by focusing on the antenna hardware. This important book: Offers an introduction to the most recent developments of the design of low-cost smart antennas and their applications Presents a unique book that puts the focus on antenna hardware Includes a variety of case studies that clearly demonstrate the implementation of current design techniques Introduces both fundamental theories as well as more advanced topics Written for students and researchers and antenna engineers, Low-cost Smart Antennas explores the most recent advances in the field with an emphasis on antenna hardware.
Substrate-Integrated Millimeter-Wave Antennas for Next-Generation Communication and Radar Systems The first and only comprehensive text on substrate-integrated mmW antenna technology, state-of-the-art antenna design, and emerging wireless applications Substrate-Integrated Millimeter-Wave Antennas for Next-Generation Communication and Radar Systems elaborates the most important topics related to revolutionary millimeter-wave (mmW) technology. Following a clear description of fundamental concepts including substrate-integrated waveguides and loss analysis, the text treats key design methods, prototyping techniques, and experimental setup and testing. The authors also highlight applications of mmW antennas in 5G wireless communication and next-generation radar systems. Readers are prepared to put techniques into practice through practical discussions of how to set up testing for impedance matching, radiation patterns, gain from 24GHz up to 325 GHz, and more. This book will bring readers state-of-the-art designs and recent progress in substrate-integrated mmW antennas for emerging wireless applications. Substrate-Integrated Millimeter-Wave Antennas for Next-Generation Communication and Radar Systems is the first comprehensive text on the topic, allowing readers to quickly master mmW technology. This book: Introduces basic concepts such as metamaterials Huygens’s surface, zero-index structures, and pattern synthesis Describes prototyping in the form of fabrication based on printed-circuit-board, low-temperature-co-fired-ceramic and micromachining Explores applications for next-generation radar and imaging systems such as 24-GHz and 77-GHz vehicular radar systems Elaborates design methods including waveguide-based feeding network, three-dimensional feeding structure, dielectric loaded aperture antenna element, and low-sidelobe synthesis The mmW is one of today’s most important emerging technologies. This book provides graduate students, researchers, and engineers with the knowledge they need to deploy mmW systems and develop new antenna designs with low cost, low loss, and low complexity.