Download Free Modern Introduction To Surface Plasmons Book in PDF and EPUB Free Download. You can read online Modern Introduction To Surface Plasmons and write the review.

This book introduces graduate students in physics, optics, materials science and electrical engineering to surface plasmons, and applications of surface plasmon physics.
The book reviews the properties of surface plasmons that depict electromagnetic surface waves or surface plasma polaritons. Their propagation on smooth and corrugated surfaces (with rough or grating profiles) is considered. In the latter case, the corrugations can cause strong coupling of the surface plasmons with photons leading to resonances with a strong enhancement of the electromagnetic field in the surface. Coupling and field enhancement are the most prominent phenomena on corrugated surfaces and lead to numerous important applications. Attention has been focused on the explanation of the physics. To keep the text readable, sophisticated calculations have been avoided, and instead various applications dealing with enhanced light emission, nonlinear optics, SERS, and other cases of interest are discussed.
Considered a major field of photonics, plasmonics offers the potential to confine and guide light below the diffraction limit and promises a new generation of highly miniaturized photonic devices. This book combines a comprehensive introduction with an extensive overview of the current state of the art. Coverage includes plasmon waveguides, cavities for field-enhancement, nonlinear processes and the emerging field of active plasmonics studying interactions of surface plasmons with active media.
Surface plasmon resonance (SPR) plays a dominant role in real-time interaction sensing of biomolecular binding events, this book provides a total system description including optics, fluidics and sensor surfaces for a wide researcher audience.
This book deals with all aspects of plasmonics, basics, applications and advanced developments. Plasmonics is an emerging field of research dedicated to the resonant interaction of light with metals. The light/matter interaction is strongly enhanced at a nanometer scale which sparks a keen interest of a wide scientific community and offers promising applications in pharmacology, solar energy, nanocircuitry or also light sources. The major breakthroughs of this field of research originate from the recent advances in nanotechnology, imaging and numerical modelling. The book is divided into three main parts: extended surface plasmons polaritons propagating on metallic surfaces, surface plasmons localized on metallic particles, imaging and nanofabrication techniques. The reader will find in the book: Principles and recent advances of plasmonics, a complete description of the physics of surface plasmons, a historical survey with emphasize on the emblematic topic of Wood's anomaly, an overview of modern applications of molecular plasmonics and an extensive description of imaging and fabrications techniques.
Introducing graduate students in physics, optics, materials science and electrical engineering to surface plasmons, this book also covers guided modes at planar interfaces of metamaterials with negative refractive index. The physics of localized and propagating surface plasmons, on planar films, gratings, nanowires and nanoparticles, is developed using both analytical and numerical techniques. Guided modes at the interfaces between materials with any combination of positive or negative permittivity and permeability are analyzed in a systematic manner. Applications of surface plasmon physics are described, including near-field transducers in heat-assisted magnetic recording and biosensors. Resources at www.cambridge.org/9780521767170 include Mathematica code to generate figures from the book, color versions of many figures, and extended discussion of topics such as vector diffraction theory.
This book discusses a new class of photonic devices, known as surface plasmon nanophotonic structures. The book highlights several exciting new discoveries, while providing a clear discussion of the underlying physics, the nanofabrication issues, and the materials considerations involved in designing plasmonic devices with new functionality. Chapters written by the leaders in the field of plasmonics provide a solid background to each topic.
The title of this book, Plasmonics: Principles and Applications, encompasses theory, technical issues, and practical applications which are of interest for diverse classes of the plasmonics. The book is a collection of the contemporary researches and developments in the area of plasmonics technology. It consists of 21 chapters that focus on interesting topics of modeling and computational methods, plasmonic structures for light transmission, focusing, and guiding, emerging concepts, and applications.
Plasmonics gives researchers in universities and industries and designers an overview of phenomena enabled by artificially designed metamaterials and their application for plasmonic devices. The purpose of this book is to provide a detailed introduction to the basic modeling approaches and an overview of enabled innovative phenomena. The main research agenda of this book is aimed at the study of modeling techniques and novel functionalities such as plasmonic enhancement of solar cell efficiency, plasmonics in sensing, etc. The topics addressed in this book cover the major strands: theory, modeling and design, applications in practical devices, fabrication, characterization, and measurement. It is worthwhile mentioning that the strategic objectives of developing new artificial functional materials require close cooperation of the research in each subarea.
This book investigates in detail some new spoof surface plasmon polaritons (SSPPs) structures and their applications to antenna. It introduces the working principle and radiation characteristics of directional antenna, omnidirectional antenna, reconfigurable antenna and phase-mode antenna based on SSPPs structure. Especially, the irregular SSPPs structure, such as T-shaped and m-shaped SSPPs structures, is introduced to low-profile end-fire antenna with vertical polarization; the rotated SSPPs structure is applied to CP end-fire antenna and omnidirectional antenna; PIN circuit combining with SSPPs structure is used to pattern reconfigurable antenna; the novel phase-mode SSPPs antennas with multi-modes are performed too. This book proposes a continuous method to develop the potentialities of the SSPPs antenna. And the readers can study the method or ideas of the SSPPs antenna, even graft the methods to other SSPPs antenna. The book is intended for undergraduate and graduate students who are interested in SSPPs antenna technology, researchers investigating high-performance antenna, and antenna design engineers working on multi-function antenna applications.