Download Free Modern Digital Designs With Eda Vhdl And Fpga Book in PDF and EPUB Free Download. You can read online Modern Digital Designs With Eda Vhdl And Fpga and write the review.

Digital Electronics and Design with VHDL offers a friendly presentation of the fundamental principles and practices of modern digital design. Unlike any other book in this field, transistor-level implementations are also included, which allow the readers to gain a solid understanding of a circuit's real potential and limitations, and to develop a realistic perspective on the practical design of actual integrated circuits. Coverage includes the largest selection available of digital circuits in all categories (combinational, sequential, logical, or arithmetic); and detailed digital design techniques, with a thorough discussion on state-machine modeling for the analysis and design of complex sequential systems. Key technologies used in modern circuits are also described, including Bipolar, MOS, ROM/RAM, and CPLD/FPGA chips, as well as codes and techniques used in data storage and transmission. Designs are illustrated by means of complete, realistic applications using VHDL, where the complete code, comments, and simulation results are included. This text is ideal for courses in Digital Design, Digital Logic, Digital Electronics, VLSI, and VHDL; and industry practitioners in digital electronics. Comprehensive coverage of fundamental digital concepts and principles, as well as complete, realistic, industry-standard designs Many circuits shown with internal details at the transistor-level, as in real integrated circuits Actual technologies used in state-of-the-art digital circuits presented in conjunction with fundamental concepts and principles Six chapters dedicated to VHDL-based techniques, with all VHDL-based designs synthesized onto CPLD/FPGA chips
Digital Design: An Embedded Systems Approach Using VHDL provides a foundation in digital design for students in computer engineering, electrical engineering and computer science courses. It takes an up-to-date and modern approach of presenting digital logic design as an activity in a larger systems design context. Rather than focus on aspects of digital design that have little relevance in a realistic design context, this book concentrates on modern and evolving knowledge and design skills. Hardware description language (HDL)-based design and verification is emphasized--VHDL examples are used extensively throughout. By treating digital logic as part of embedded systems design, this book provides an understanding of the hardware needed in the analysis and design of systems comprising both hardware and software components. Includes a Web site with links to vendor tools, labs and tutorials. Presents digital logic design as an activity in a larger systems design context Features extensive use of VHDL examples to demonstrate HDL (hardware description language) usage at the abstract behavioural level and register transfer level, as well as for low-level verification and verification environments Includes worked examples throughout to enhance the reader's understanding and retention of the material Companion Web site includes links to tools for FPGA design from Synplicity, Mentor Graphics, and Xilinx, VHDL source code for all the examples in the book, lecture slides, laboratory projects, and solutions to exercises
This book introduces the FPGA technology used in the laboratory sessions, and provides a step-by-step guide for designing and simulation of digital circuits. It utilizes the VHDL language, which is one of the most common language used to describe the design of digital systems. The Quartus II, Xilinx ISE 14.7 and ModelSim software are used to process the VHDL code and make simulations, and then the Altera and Xilinx FPGA platforms are employed to implement the simulated digital designs. The book is composed of four parts. The first part of this book has two chapters and covers various aspects: FPGA architectures, ASIC vs FPGA comparison, FPGA design flow and basic VHDL concepts necessary to describe the design of digital systems. The second part of the book includes three chapters that deal with the design of digital circuits such as combinational logic circuits, sequential logic circuits and finite state machines. The third part of the book is reserved for laboratory projects carried out on the FPGA platform. It is a largely hands-on lab class for design digital circuits and implementing their designs on the Altera FPGA platform. Finally, the fourth part of this work is devoted to recent applications carried out on FPGAs, in particular advanced techniques in renewable energy systems. The book is primarily intended for students, scholars, and industrial practitioners interested in the design of modern digital systems.
Digital Design: An Embedded Systems Approach Using Verilog provides a foundation in digital design for students in computer engineering, electrical engineering and computer science courses. It takes an up-to-date and modern approach of presenting digital logic design as an activity in a larger systems design context. Rather than focus on aspects of digital design that have little relevance in a realistic design context, this book concentrates on modern and evolving knowledge and design skills. Hardware description language (HDL)-based design and verification is emphasized--Verilog examples are used extensively throughout. By treating digital logic as part of embedded systems design, this book provides an understanding of the hardware needed in the analysis and design of systems comprising both hardware and software components. Includes a Web site with links to vendor tools, labs and tutorials. Presents digital logic design as an activity in a larger systems design context Features extensive use of Verilog examples to demonstrate HDL (hardware description language) usage at the abstract behavioural level and register transfer level, as well as for low-level verification and verification environments Includes worked examples throughout to enhance the reader's understanding and retention of the material Companion Web site includes links to tools for FPGA design from Synplicity, Mentor Graphics, and Xilinx, Verilog source code for all the examples in the book, lecture slides, laboratory projects, and solutions to exercises
The skills and guidance needed to master RTL hardware design This book teaches readers how to systematically design efficient, portable, and scalable Register Transfer Level (RTL) digital circuits using the VHDL hardware description language and synthesis software. Focusing on the module-level design, which is composed of functional units, routing circuit, and storage, the book illustrates the relationship between the VHDL constructs and the underlying hardware components, and shows how to develop codes that faithfully reflect the module-level design and can be synthesized into efficient gate-level implementation. Several unique features distinguish the book: * Coding style that shows a clear relationship between VHDL constructs and hardware components * Conceptual diagrams that illustrate the realization of VHDL codes * Emphasis on the code reuse * Practical examples that demonstrate and reinforce design concepts, procedures, and techniques * Two chapters on realizing sequential algorithms in hardware * Two chapters on scalable and parameterized designs and coding * One chapter covering the synchronization and interface between multiple clock domains Although the focus of the book is RTL synthesis, it also examines the synthesis task from the perspective of the overall development process. Readers learn good design practices and guidelines to ensure that an RTL design can accommodate future simulation, verification, and testing needs, and can be easily incorporated into a larger system or reused. Discussion is independent of technology and can be applied to both ASIC and FPGA devices. With a balanced presentation of fundamentals and practical examples, this is an excellent textbook for upper-level undergraduate or graduate courses in advanced digital logic. Engineers who need to make effective use of today's synthesis software and FPGA devices should also refer to this book.
An eagerly anticipated, up-to-date guide to essential digital design fundamentals Offering a modern, updated approach to digital design, this much-needed book reviews basic design fundamentals before diving into specific details of design optimization. You begin with an examination of the low-levels of design, noting a clear distinction between design and gate-level minimization. The author then progresses to the key uses of digital design today, and how it is used to build high-performance alternatives to software. Offers a fresh, up-to-date approach to digital design, whereas most literature available is sorely outdated Progresses though low levels of design, making a clear distinction between design and gate-level minimization Addresses the various uses of digital design today Enables you to gain a clearer understanding of applying digital design to your life With this book by your side, you'll gain a better understanding of how to apply the material in the book to real-world scenarios.
The Definitive, Up-to-Date Guide to Digital Design with SystemVerilog: Concepts, Techniques, and Code To design state-of-the-art digital hardware, engineers first specify functionality in a high-level Hardware Description Language (HDL)—and today’s most powerful, useful HDL is SystemVerilog, now an IEEE standard. Digital System Design with SystemVerilog is the first comprehensive introduction to both SystemVerilog and the contemporary digital hardware design techniques used with it. Building on the proven approach of his bestselling Digital System Design with VHDL, Mark Zwolinski covers everything engineers need to know to automate the entire design process with SystemVerilog—from modeling through functional simulation, synthesis, timing simulation, and verification. Zwolinski teaches through about a hundred and fifty practical examples, each with carefully detailed syntax and enough in-depth information to enable rapid hardware design and verification. All examples are available for download from the book's companion Web site, zwolinski.org. Coverage includes Using electronic design automation tools with programmable logic and ASIC technologies Essential principles of Boolean algebra and combinational logic design, with discussions of timing and hazards Core modeling techniques: combinational building blocks, buffers, decoders, encoders, multiplexers, adders, and parity checkers Sequential building blocks: latches, flip- flops, registers, counters, memory, and sequential multipliers Designing finite state machines: from ASM chart to D flip-flops, next state, and output logic Modeling interfaces and packages with SystemVerilog Designing testbenches: architecture, constrained random test generation, and assertion-based verification Describing RTL and FPGA synthesis models Understanding and implementing Design-for-Test Exploring anomalous behavior in asynchronous sequential circuits Performing Verilog-AMS and mixed-signal modeling Whatever your experience with digital design, older versions of Verilog, or VHDL, this book will help you discover SystemVerilog’s full power and use it to the fullest.
Master FPGA digital system design and implementation with Verilog and VHDL This practical guide explores the development and deployment of FPGA-based digital systems using the two most popular hardware description languages, Verilog and VHDL. Written by a pair of digital circuit design experts, the book offers a solid grounding in FPGA principles, practices, and applications and provides an overview of more complex topics. Important concepts are demonstrated through real-world examples, ready-to-run code, and inexpensive start-to-finish projects for both the Basys and Arty boards. Digital System Design with FPGA: Implementation Using Verilog and VHDL covers: • Field programmable gate array fundamentals • Basys and Arty FPGA boards • The Vivado design suite • Verilog and VHDL • Data types and operators • Combinational circuits and circuit blocks • Data storage elements and sequential circuits • Soft-core microcontroller and digital interfacing • Advanced FPGA applications • The future of FPGA