Download Free Modern Characterization Of Electromagnetic Systems And Its Associated Metrology Book in PDF and EPUB Free Download. You can read online Modern Characterization Of Electromagnetic Systems And Its Associated Metrology and write the review.

New method for the characterization of electromagnetic wave dynamics Modern Characterization of Electromagnetic Systems introduces a new method of characterizing electromagnetic wave dynamics and measurements based on modern computational and digital signal processing techniques. The techniques are described in terms of both principle and practice, so readers understand what they can achieve by utilizing them. Additionally, modern signal processing algorithms are introduced in order to enhance the resolution and extract information from electromagnetic systems, including where it is not currently possible. For example, the author addresses the generation of non-minimum phase or transient response when given amplitude-only data. Presents modern computational concepts in electromagnetic system characterization Describes a solution to the generation of non-minimum phase from amplitude-only data Covers model-based parameter estimation and planar near-field to far-field transformation as well as spherical near-field to far-field transformation Modern Characterization of Electromagnetic Systems is ideal for graduate students, researchers, and professionals working in the area of antenna measurement and design. It introduces and explains a new process related to their work efforts and studies.
Measurement and Analysis of Overvoltages in Power Systems Jianming Li, Professor, State Grid Corporation, China A combination of theory and application, this book features practical tests and analytical techniques comprehensively with engineering practicality as its focus. Based on years of research and industry experience, the author introduces many scientific research methods such as overvoltage simulation studies, dynamic simulation experiment platform development and application, and overvoltage pattern recognition. Readers will get a good grounding in the various sources of overvoltages in power systems, methods in on-line measurements as well as explanations of overvoltage formation mechanisms and monitoring analysis methods. •Systematically examines sources, online measurements, analytical techniques, and simulations of overvoltages, with an emphasis on engineering practicality •Presents practical engineering examples analyzing overvoltages and improving system operation, based on field experiments and data analysis •Features overvoltage simulations and waveform analysis in transmission systems Measurement and Analysis of Overvoltages in Power Systems is intended as an all-in-one guide for engineers and researchers in power systems engineering. It can be used as a reference text for graduate students and lecturers of electrical engineering.
This book is devoted to recent developments of instrumentation and measurement techniques applied to the aerospace field. It includes 23 selected papers from the 2019 IEEE International Workshop on Metrology for AeroSpace. Measurements are essential for obtaining a deeper knowledge of a phenomenon or an asset, as well as for making proper decisions and proposing new and efficient solutions, and this is especially true in environments as complex as aerospace. The research contributions included in the book can raise the interest of a wide group of researchers, operators and decision-makers from metrology and aerospace fields by presenting the most innovative solutions in this field from the scientific and technological points of view.
This Green Book is an essential resource for power system engineers seeking comprehensive information on contemporary power system dynamic modelling and analysis. With today's rapid adoption of inverter-based resources and the resulting changes in power system dynamics, this book compares conventional power systems with evolving power systems characterized by high shares of grid-connected and distributed inverter-based resources. It covers dynamic phenomena, analysis methods, simulation tools and enablers required for secure and reliable system planning and operation. Starting with an overview of power system studies and associated analysis tools, the book provides modelling requirements for various power system components, including existing and emerging technologies. It includes practical examples from real-world power systems worldwide that act as step-by-step study guides for practising engineers and provides knowledge to apply in their day-to-day tasks. Additionally, the book emphasizes the importance of power system model acceptance testing and validation, providing practical examples of various testing methods. Written with practising power system engineers in mind, this book minimizes the use of advanced mathematics. However, relevant sources for those interested in learning more about mathematical concepts are provided. Overall, this book is an invaluable resource for power system engineers navigating contemporary power systems. Readers who would like to comment on any of the published books or identify errors to the editorial team please contact: [email protected].
Provides a detailed and systematic description of the Method of Moments (Boundary Element Method) for electromagnetic modeling at low frequencies and includes hands-on, application-based MATLAB® modules with user-friendly and intuitive GUI and a highly visualized interactive output. Includes a full-body computational human phantom with over 120 triangular surface meshes extracted from the Visible Human Project® Female dataset of the National library of Medicine and fully compatible with MATLAB® and major commercial FEM/BEM electromagnetic software simulators. This book covers the basic concepts of computational low-frequency electromagnetics in an application-based format and hones the knowledge of these concepts with hands-on MATLAB® modules. The book is divided into five parts. Part 1 discusses low-frequency electromagnetics, basic theory of triangular surface mesh generation, and computational human phantoms. Part 2 covers electrostatics of conductors and dielectrics, and direct current flow. Linear magnetostatics is analyzed in Part 3. Part 4 examines theory and applications of eddy currents. Finally, Part 5 evaluates nonlinear electrostatics. Application examples included in this book cover all major subjects of low-frequency electromagnetic theory. In addition, this book includes complete or summarized analytical solutions to a large number of quasi-static electromagnetic problems. Each Chapter concludes with a summary of the corresponding MATLAB® modules. Combines fundamental electromagnetic theory and application-oriented computation algorithms in the form of stand alone MATLAB® modules Makes use of the three-dimensional Method of Moments (MoM) for static and quasistatic electromagnetic problems Contains a detailed full-body computational human phantom from the Visible Human Project® Female, embedded implant models, and a collection of homogeneous human shells Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB® is a resource for electrical and biomedical engineering students and practicing researchers, engineers, and medical doctors working on low-frequency modeling and bioelectromagnetic applications.
Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. - Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques - Reviews the determination of microstructural and mechanical properties - Focuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industries - Serves as a highly desirable resource for both long-term monitoring and short-term assessment of materials
A comprehensive, hands-on review of the most up-to-date techniques in RF and microwave measurement, including practical advice on deployment challenges.