Download Free Modern Aspects Of Particle Physics Book in PDF and EPUB Free Download. You can read online Modern Aspects Of Particle Physics and write the review.

"Unique in its coverage of all aspects of modern particle physics, this textbook provides a clear connection between the theory and recent experimental results, including the discovery of the Higgs boson at CERN. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics. Physical theory is introduced in a straightforward manner with full mathematical derivations throughout. Fully-worked examples enable students to link the mathematical theory to results from modern particle physics experiments. End-of-chapter exercises, graded by difficulty, provide students with a deeper understanding of the subject. Online resources available at www.cambridge.org/MPP feature password-protected fully-worked solutions to problems for instructors, numerical solutions and hints to the problems for students and PowerPoint slides and JPEGs of figures from the book"--
This book is written for students and scientists wanting to learn about the Standard Model of particle physics. Only an introductory course knowledge about quantum theory is needed. The text provides a pedagogical description of the theory, and incorporates the recent Higgs boson and top quark discoveries. With its clear and engaging style, this new edition retains its essential simplicity. Long and detailed calculations are replaced by simple approximate ones. It includes introductions to accelerators, colliders, and detectors, and several main experimental tests of the Standard Model are explained. Descriptions of some well-motivated extensions of the Standard Model prepare the reader for new developments. It emphasizes the concepts of gauge theories and Higgs physics, electroweak unification and symmetry breaking, and how force strengths vary with energy, providing a solid foundation for those working in the field, and for those who simply want to learn about the Standard Model.
'Particle or Wave' explains the origins and development of modern physical concepts about matter and the controversies surrounding them.
Written for a two-semester Master's or graduate course, this comprehensive treatise intertwines theory and experiment in an original approach that covers all aspects of modern particle physics. The author uses rigorous step-by-step derivations and provides more than 100 end-of-chapter problems for additional practice to ensure that students will not only understand the material but also be able to apply their knowledge. Featuring up-to-date experimental material, including the discovery of the Higgs boson at CERN and of neutrino oscillations, this monumental volume also serves as a one-stop reference for particle physics researchers of all levels and specialties. Richly illustrated with more than 450 figures, the text guides students through all the intricacies of quantum mechanics and quantum field theory in an intuitive manner that few books achieve.
For scientific, technological and organizational reasons, the end of World War II (in 1945) saw a rapid acceleration in the tempo of discovery and understanding in nuclear physics, cosmic rays and quantum field theory, which together triggered the birth of modern particle physics. The first fifteen years (1945-60) following the war's end ? the ?Startup Period? in modern particle physics -witnessed a series of major experimental and theoretical developments that began to define the conceptual contours (non-Abelian internal symmetries, Yang-Mills fields, renormalization group, chirality invariance, baryon-lepton symmetry in weak interactions, spontaneous symmetry breaking) of the quantum field theory of three of the basic interactions in nature (electromagnetic, strong and weak). But it took another fifteen years (1960-75) ? the ?Heroic Period? in modern particle physics ? to unravel the physical content and complete the mathematical formulation of the standard gauge theory of the strong and electroweak interactions among the three generations of quarks and leptons. The impressive accomplishments during the ?Heroic Period? were followed by what is called the ?period of consolidation and speculation (1975-1990)?, which includes the experimental consolidation of the standard model (SM) through precision tests, theoretical consolidation of SM through the search for more rigorous mathematical solutions to the Yang-Mills-Higgs equations, and speculative theoretical excursions ?beyond SM?.Within this historical-conceptual framework, the author ? himself a practicing particle theorist for the past fifty years ? attempts to trace the highlights in the conceptual evolution of modern particle physics from its early beginnings until the present time. Apart from the first chapter ? which sketches a broad overview of the entire field ? the remaining nine chapters of the book offer detailed discussions of the major concepts and principles that prevailed and were given wide currency during each of the fifteen-year periods that comprise the history of modern particle physics. Those concepts and principles that contributed only peripherally to the standard model are given less coverage but an attempt is made to inform the reader about such contributions (which may turn out to be significant at a future time) and to suggest references that supply more information. Chapters 2 and 3 of the book cover a range of topics that received dedicated attention during the ?Startup Period? although some of the results were not incorporated into the structure of the standard model. Chapters 4-6 constitute the core of the book and try to recapture much of the conceptual excitement of the ?Heroic Period?, when quantum flavordynamics (QFD) and quantum chromodynamics (QCD) received their definitive formulation. [It should be emphasized that, throughout the book, logical coherence takes precedence over historical chronology (e.g. some of the precision tests of QFD are discussed in Chapter 6)]. Chapter 7 provides a fairly complete discussion of the chiral gauge anomalies in four dimensions with special application to the standard model (although the larger unification models are also considered). The remaining three chapters of the book (Chapters 7-10) cover concepts and principles that originated primarily during the ?Period of Consolidation and Speculation? but, again, this is not a literal statement. Chapters 8 and 9 report on two of the main directions that were pursued to overcome acknowledged deficiencies of the standard model: unification models in Chapter 8 and attempts to account for the existence of precisely three generations of quarks and leptons, primarily by means of preon models, in Chapter 9. The most innovative of the final three chapters of the book is Chapter 10 on topological conservation laws. This last chapter tries to explain the significance of topologically non-trivial solutions in four-dimensional (space-time) particle physics (e.g. 't Hooft-Polyakov monopoles, instantons, sphalerons, global SU(2) anomaly, Wess-Zumino term, etc.) and to reflect on some of the problems that have ensued (e.g. the ?strong CP problem? in QCD) from this effort. It turns out that the more felicitous topological applications of field theory are found ? as of now ? in condensed matter physics; these successful physical applications (to polyacetylene, quantized magnetic flux in type-II low temperature superconductivity, etc.) are discussed in Chapter 10, as a good illustration of the conceptual unity of modern physics.
· A Preview of Particle Physics· Symmetries and Quarks· Antiparticles· Electrodynamics of Spinless Particles· The Dirac Equation· Electrodynamics of Spin-1/2 Particles· Loops, Renormalization, Running Coupling Constants, and All That· The Structure of Hadrons· Partons· Quantum Chromodynamics· Annihilation and QCD· Weak Interactions· Electroweak Interactions· Gauge Symmetries· The Weinberg-Salam Model and Beyond
Introduces the fundamentals of particle physics with a focus on modern developments and an intuitive physical interpretation of results.
This book provides a comprehensive overview of modern particle physics accessible to anyone with a true passion for wanting to know how the universe works. We are introduced to the known particles of the world we live in. An elegant explanation of quantum mechanics and relativity paves the way for an understanding of the laws that govern particle physics. These laws are put into action in the world of accelerators, colliders and detectors found at institutions such as CERN and Fermilab that are in the forefront of technical innovation. Real world and theory meet using Feynman diagrams to solve the problems of infinities and deduce the need for the Higgs boson.Facts and Mysteries in Elementary Particle Physics offers an incredible insight from an eyewitness and participant in some of the greatest discoveries in 20th century science. From Einstein's theory of relativity to the spectacular discovery of the Higgs particle, this book will fascinate and educate anyone interested in the world of quarks, leptons and gauge theories.This book also contains many thumbnail sketches of particle physics personalities, including contemporaries as seen through the eyes of the author. Illustrated with pictures, these candid sketches present rare, perceptive views of the characters that populate the field.The Chapter on Particle Theory, in a pre-publication, was termed 'superbly lucid' by David Miller in Nature (Vol. 396, 17 Dec. 1998, p. 642).
A comprehensive treatment of modern theoretical and experimental particle physics, in two volumes.