Download Free Models In Software Engineering Book in PDF and EPUB Free Download. You can read online Models In Software Engineering and write the review.

A guide to the application of the theory and practice of computing to develop and maintain software that economically solves real-world problem How to Engineer Software is a practical, how-to guide that explores the concepts and techniques of model-based software engineering using the Unified Modeling Language. The author—a noted expert on the topic—demonstrates how software can be developed and maintained under a true engineering discipline. He describes the relevant software engineering practices that are grounded in Computer Science and Discrete Mathematics. Model-based software engineering uses semantic modeling to reveal as many precise requirements as possible. This approach separates business complexities from technology complexities, and gives developers the most freedom in finding optimal designs and code. The book promotes development scalability through domain partitioning and subdomain partitioning. It also explores software documentation that specifically and intentionally adds value for development and maintenance. This important book: Contains many illustrative examples of model-based software engineering, from semantic model all the way to executable code Explains how to derive verification (acceptance) test cases from a semantic model Describes project estimation, along with alternative software development and maintenance processes Shows how to develop and maintain cost-effective software that solves real-world problems Written for graduate and undergraduate students in software engineering and professionals in the field, How to Engineer Software offers an introduction to applying the theory of computing with practice and judgment in order to economically develop and maintain software.
Abstraction is the most basic principle of software engineering. Abstractions are provided by models. Modeling and model transformation constitute the core of model-driven development. Models can be refined and finally be transformed into a technical implementation, i.e., a software system. The aim of this book is to give an overview of the state of the art in model-driven software development. Achievements are considered from a conceptual point of view in the first part, while the second part describes technical advances and infrastructures. Finally, the third part summarizes experiences gained in actual projects employing model-driven development. Beydeda, Book and Gruhn put together the results from leading researchers in this area, both from industry and academia. The result is a collection of papers which gives both researchers and graduate students a comprehensive overview of current research issues and industrial forefront practice, as promoted by OMG’s MDA initiative.
This book discusses how model-based approaches can improve the daily practice of software professionals. This is known as Model-Driven Software Engineering (MDSE) or, simply, Model-Driven Engineering (MDE). MDSE practices have proved to increase efficiency and effectiveness in software development, as demonstrated by various quantitative and qualitative studies. MDSE adoption in the software industry is foreseen to grow exponentially in the near future, e.g., due to the convergence of software development and business analysis. The aim of this book is to provide you with an agile and flexible tool to introduce you to the MDSE world, thus allowing you to quickly understand its basic principles and techniques and to choose the right set of MDSE instruments for your needs so that you can start to benefit from MDSE right away. The book is organized into two main parts. The first part discusses the foundations of MDSE in terms of basic concepts (i.e., models and transformations), driving principles, application scenarios, and current standards, like the well-known MDA initiative proposed by OMG (Object Management Group) as well as the practices on how to integrate MDSE in existing development processes. The second part deals with the technical aspects of MDSE, spanning from the basics on when and how to build a domain-specific modeling language, to the description of Model-to-Text and Model-to-Model transformations, and the tools that support the management of MDSE projects. The second edition of the book features: a set of completely new topics, including: full example of the creation of a new modeling language (IFML), discussion of modeling issues and approaches in specific domains, like business process modeling, user interaction modeling, and enterprise architecture complete revision of examples, figures, and text, for improving readability, understandability, and coherence better formulation of definitions, dependencies between concepts and ideas addition of a complete index of book content In addition to the contents of the book, more resources are provided on the book's website http://www.mdse-book.com, including the examples presented in the book.
This book covers all you need to know to model and design software applications from use cases to software architectures in UML and shows how to apply the COMET UML-based modeling and design method to real-world problems. The author describes architectural patterns for various architectures, such as broker, discovery, and transaction patterns for service-oriented architectures, and addresses software quality attributes including maintainability, modifiability, testability, traceability, scalability, reusability, performance, availability, and security. Complete case studies illustrate design issues for different software architectures: a banking system for client/server architecture, an online shopping system for service-oriented architecture, an emergency monitoring system for component-based software architecture, and an automated guided vehicle for real-time software architecture. Organized as an introduction followed by several short, self-contained chapters, the book is perfect for senior undergraduate or graduate courses in software engineering and design, and for experienced software engineers wanting a quick reference at each stage of the analysis, design, and development of large-scale software systems.
Data Science for Software Engineering: Sharing Data and Models presents guidance and procedures for reusing data and models between projects to produce results that are useful and relevant. Starting with a background section of practical lessons and warnings for beginner data scientists for software engineering, this edited volume proceeds to identify critical questions of contemporary software engineering related to data and models. Learn how to adapt data from other organizations to local problems, mine privatized data, prune spurious information, simplify complex results, how to update models for new platforms, and more. Chapters share largely applicable experimental results discussed with the blend of practitioner focused domain expertise, with commentary that highlights the methods that are most useful, and applicable to the widest range of projects. Each chapter is written by a prominent expert and offers a state-of-the-art solution to an identified problem facing data scientists in software engineering. Throughout, the editors share best practices collected from their experience training software engineering students and practitioners to master data science, and highlight the methods that are most useful, and applicable to the widest range of projects. - Shares the specific experience of leading researchers and techniques developed to handle data problems in the realm of software engineering - Explains how to start a project of data science for software engineering as well as how to identify and avoid likely pitfalls - Provides a wide range of useful qualitative and quantitative principles ranging from very simple to cutting edge research - Addresses current challenges with software engineering data such as lack of local data, access issues due to data privacy, increasing data quality via cleaning of spurious chunks in data
""This is the single best book on software quality engineering and metrics that I've encountered."" --Capers Jones, from the Foreword"Metrics and Models in Software Quality Engineering, Second Edition," is the definitive book on this essential topic of software development. Comprehensive in scope with extensive industry examples, it shows how to measure software quality and use measurements to improve the software development process. Four major categories of quality metrics and models are addressed: quality management, software reliability and projection, complexity, and customer view. In addition, the book discusses the fundamentals of measurement theory, specific quality metrics and tools, and methods for applying metrics to the software development process.New chapters bring coverage of critical topics, including: In-process metrics for software testingMetrics for object-oriented software developmentAvailability metricsMethods for conducting in-process quality assessments and software project assessmentsDos and Don'ts of Software Process Improvement, by Patrick O'TooleUsing Function Point Metrics to Measure Software Process Improvement, by Capers Jones In addition to the excellent balance of theory, techniques, and examples, this book is highly instructive and practical, covering one of the most important topics in software development--quality engineering. 0201729156B08282002
Model-Driven Software Development (MDSD) is currently a highly regarded development paradigm among developers and researchers. With the advent of OMG's MDA and Microsoft's Software Factories, the MDSD approach has moved to the centre of the programmer's attention, becoming the focus of conferences such as OOPSLA, JAOO and OOP. MDSD is about using domain-specific languages to create models that express application structure or behaviour in an efficient and domain-specific way. These models are subsequently transformed into executable code by a sequence of model transformations. This practical guide for software architects and developers is peppered with practical examples and extensive case studies. International experts deliver: * A comprehensive overview of MDSD and how it relates to industry standards such as MDA and Software Factories. * Technical details on meta modeling, DSL construction, model-to-model and model-to-code transformations, and software architecture. * Invaluable insight into the software development process, plus engineering issues such as versioning, testing and product line engineering. * Essential management knowledge covering economic and organizational topics, from a global perspective. Get started and benefit from some practical support along the way!
This book identifies challenges and opportunities in the development and implementation of software that contain significant statistical content. While emphasizing the relevance of using rigorous statistical and probabilistic techniques in software engineering contexts, it presents opportunities for further research in the statistical sciences and their applications to software engineering. It is intended to motivate and attract new researchers from statistics and the mathematical sciences to attack relevant and pressing problems in the software engineering setting. It describes the "big picture," as this approach provides the context in which statistical methods must be developed. The book's survey nature is directed at the mathematical sciences audience, but software engineers should also find the statistical emphasis refreshing and stimulating. It is hoped that the book will have the effect of seeding the field of statistical software engineering by its indication of opportunities where statistical thinking can help to increase understanding, productivity, and quality of software and software production.
This book constitutes thoroughly revised and selected papers from the 8th International Conference on Model-Driven Engineering and Software Development, MODELSWARD 2020, held in Valletta, Malta, in February 2020. The 15 revised and extended papers presented in this volume were carefully reviewed and selected from 66 submissions. They present recent research results and development activities in using models and model driven engineering techniques for software development. The papers are organized in topical sections on​ methodologies, processes and platforms; applications and software development; modeling languages, tools and architectures.
This book constitutes thoroughly revised and selected papers from the 7th International Conference on Model-Driven Engineering and Software Development, MODELSWARD 2019, held in Prague, Czech Republic, in February 2019. The 16 thoroughly revised and extended papers presented in this volume were carefully reviewed and selected from 76 submissions. They address some of the most relevant challenges being faced by researchers and practitioners in the field of model-driven engineering and software development and cover topics like language design and tooling; programming support tools; code and text generation from models, behavior modeling and analysis; model transformations and multi-view modeling; as well as applications of MDD and its related techniques to cyber-physical systems, cyber security, IoT, autonomous vehicles and healthcare.