Download Free Models And Algorithms For Planning And Scheduling Problems Book in PDF and EPUB Free Download. You can read online Models And Algorithms For Planning And Scheduling Problems and write the review.

This book is a printed edition of the Special Issue " Algorithms for Scheduling Problems" that was published in Algorithms
Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. Written for computer scientists and engineers with interests in artificial intelligence, robotics, or control theory, this is the only book on this topic that tightly integrates a vast body of literature from several fields into a coherent source for teaching and reference in a wide variety of applications. Difficult mathematical material is explained through hundreds of examples and illustrations.
Although planning and scheduling optimization have been explored in the literature for many years now, it still remains a hot topic in the current scientific research. The changing market trends, globalization, technical and technological progress, and sustainability considerations make it necessary to deal with new optimization challenges in modern manufacturing, engineering, and healthcare systems. This book provides an overview of the recent advances in different areas connected with operations research models and other applications of intelligent computing techniques used for planning and scheduling optimization. The wide range of theoretical and practical research findings reported in this book confirms that the planning and scheduling problem is a complex issue that is present in different industrial sectors and organizations and opens promising and dynamic perspectives of research and development.
This book presents key advances in intelligent information technologies for industry. This book of Lecture Notes in Networks and Systems contains the papers presented in the main track of IITI 2021, the Fifth International Scientific Conference on Intelligent Information Technologies for Industry held on September 30 – October 4, 2021 in Sirius, Russia. The conference was jointly co-organized by Rostov State Transport University (Russia) and VŠB–Technical University of Ostrava (Czech Republic) with the participation of Russian Association for Artificial Intelligence (RAAI) and Sirius University (Russia). IITI 2021 was devoted to practical models and industrial applications related to intelligent information systems. It was considered as a meeting point for researchers and practitioners to enable the implementation of advanced information technologies into various industries. Nevertheless, some theoretical talks concerning the state of the art in intelligent systems and soft computing were also included into proceedings. There were 180 paper submissions from 14 countries. Each submission was reviewed by at least three chairs or PC members. We accepted 69 regular papers (38\%). Unfortunately, due to limitations of conference topics and edited volumes, the Program Committee was forced to reject some interesting papers, which did not satisfy these topics or publisher requirements. We would like to thank all authors and reviewers for their work and valuable contributions. The friendly and welcoming attitude of conference supporters and contributors made this event a success!
Machine Learning Methods for Planning provides information pertinent to learning methods for planning and scheduling. This book covers a wide variety of learning methods and learning architectures, including analogical, case-based, decision-tree, explanation-based, and reinforcement learning. Organized into 15 chapters, this book begins with an overview of planning and scheduling and describes some representative learning systems that have been developed for these tasks. This text then describes a learning apprentice for calendar management. Other chapters consider the problem of temporal credit assignment and describe tractable classes of problems for which optimal plans can be derived. This book discusses as well how reactive, integrated systems give rise to new requirements and opportunities for machine learning. The final chapter deals with a method for learning problem decompositions, which is based on an idealized model of efficiency for problem-reduction search. This book is a valuable resource for production managers, planners, scientists, and research workers.
Focusing on theory and applications of scheduling, the applications are drawn primarily from production and manufacturing environments, but state principles that are relevant to other settings as well. The broad range of topics includes deterministic and stochastic models.
Besides scheduling problems for single and parallel machines and shop scheduling problems, the book covers advanced models involving due-dates, sequence dependent change-over times and batching. A discussion of multiprocessor task scheduling and problems with multi-purpose machines is accompanied by the methods used to solve such problems, such as polynomial algorithms, dynamic programming procedures, branch-and-bound algorithms and local search heuristics, and the whole is rounded off with an analysis of complexity issues.
This handbook provides full coverage of the most recent and advanced topics in scheduling, assembling researchers from all relevant disciplines to facilitate new insights. Presented in six parts, these experts provides introductory material, complete with tutorials and algorithms, then examine classical scheduling problems. Part 3 explores scheduling models that originate in areas such as computer science, operations research. The following section examines scheduling problems that arise in real-time systems. Part 5 discusses stochastic scheduling and queueing networks, and the final section discusses a range of applications in a variety of areas, from airlines to hospitals.
Network models are critical tools in business, management, science and industry. “Network Models and Optimization” presents an insightful, comprehensive, and up-to-date treatment of multiple objective genetic algorithms to network optimization problems in many disciplines, such as engineering, computer science, operations research, transportation, telecommunication, and manufacturing. The book extensively covers algorithms and applications, including shortest path problems, minimum cost flow problems, maximum flow problems, minimum spanning tree problems, traveling salesman and postman problems, location-allocation problems, project scheduling problems, multistage-based scheduling problems, logistics network problems, communication network problem, and network models in assembly line balancing problems, and airline fleet assignment problems. The book can be used both as a student textbook and as a professional reference for practitioners who use network optimization methods to model and solve problems.