Download Free Modelling The Individual Book in PDF and EPUB Free Download. You can read online Modelling The Individual and write the review.

This book sets out the necessary processes and challenges involved in modeling student thinking, understanding and learning. The chapters look at the centrality of models for knowledge claims in science education and explore the modeling of mental processes, knowledge, cognitive development and conceptual learning. The conclusion outlines significant implications for science teachers and those researching in this field. This highly useful work provides models of scientific thinking from different field and analyses the processes by which we can arrive at claims about the minds of others. The author highlights the logical impossibility of ever knowing for sure what someone else knows, understands or thinks, and makes the case that researchers in science education need to be much more explicit about the extent to which research onto learners’ ideas in science is necessarily a process of developing models. Through this book we learn that research reports should acknowledge the role of modeling and avoid making claims that are much less tentative than is justified as this can lead to misleading and sometimes contrary findings in the literature. In everyday life we commonly take it for granted that finding out what another knows or thinks is a relatively trivial or straightforward process. We come to take the ‘mental register’ (the way we talk about the ‘contents’ of minds) for granted and so teachers and researchers may readily underestimate the challenges involved in their work.
Individual-based models are an exciting and widely used new tool for ecology. These computational models allow scientists to explore the mechanisms through which population and ecosystem ecology arises from how individuals interact with each other and their environment. This book provides the first in-depth treatment of individual-based modeling and its use to develop theoretical understanding of how ecological systems work, an approach the authors call "individual-based ecology.? Grimm and Railsback start with a general primer on modeling: how to design models that are as simple as possible while still allowing specific problems to be solved, and how to move efficiently through a cycle of pattern-oriented model design, implementation, and analysis. Next, they address the problems of theory and conceptual framework for individual-based ecology: What is "theory"? That is, how do we develop reusable models of how system dynamics arise from characteristics of individuals? What conceptual framework do we use when the classical differential equation framework no longer applies? An extensive review illustrates the ecological problems that have been addressed with individual-based models. The authors then identify how the mechanics of building and using individual-based models differ from those of traditional science, and provide guidance on formulating, programming, and analyzing models. This book will be helpful to ecologists interested in modeling, and to other scientists interested in agent-based modeling.
The essential textbook on agent-based modeling—now fully updated and expanded Agent-Based and Individual-Based Modeling has become the standard textbook on the subject for classroom use and self-instruction. Drawing on the latest version of NetLogo and fully updated with new examples, exercises, and an enhanced text for easier comprehension, this is the essential resource for anyone seeking to understand how the dynamics of biological, social, and other complex systems arise from the characteristics of the agents that make up these systems. Steven Railsback and Volker Grimm lead students stepwise through the processes of designing, programming, documenting, and doing scientific research with agent-based models, focusing on the adaptive behaviors that make these models necessary. They cover the fundamentals of modeling and model analysis, introduce key modeling concepts, and demonstrate how to implement them using NetLogo. They also address pattern-oriented modeling, an invaluable strategy for modeling real-world problems and developing theory. This accessible and authoritative book focuses on modeling as a tool for understanding real complex systems. It explains how to pose a specific question, use observations from actual systems to design models, write and test software, and more. A hands-on introduction that guides students from conceptual design to computer implementation to analysis Filled with new examples and exercises and compatible with the latest version of NetLogo Ideal for students and researchers across the natural and social sciences Written by two leading practitioners Supported by extensive instructional materials at www.railsback-grimm-abm-book.com
This book offers a comprehensive synthesis of over 40 years of research on models in physical education to suggest Models-based Practice (MbP) as an innovative future approach to physical education. It lays out the ideal conditions for MbP to flourish by situating pedagogical models at the core of physical education programs and allowing space for local agency and the co-construction of practice. Starting from the premise that true MbP does not yet exist, the book makes a case for the term "pedagogical model" over alternatives such as curriculum model and instructional model, and explains how learners’ cognitive, social, affective and psychomotor needs should be organised in ways that are distinctive and unique to each model. It examines the core principles underpinning the pedagogical models that make up MbP, including pedagogical models as organising centres for program design and as design specifications for developing local programs. The book also explores how a common structure can be applied to analyse pedagogical models at macro, meso and micro levels of discourse. Having created a language through which to talk about pedagogical models and MbP, the book concludes by identifying the conditions - some existing and some aspirational - under which MbP can prosper in reforming physical education. An essential read for academics, doctoral and post-graduate students, and pre-service and in-service teachers, Models-based Practice in Physical Education is a vital point of reference for anyone who is interested in pedagogical models and wants to embrace this potential future of physical education.
Until fairly recently, populations were handled as homogenized averages, which made modeling feasible but which ignored the essential fact that in any population there is a great variety of individuals of different ages, sizes, and degrees of fitness. Recently, because of the increased availability of affordable computer power, approaches have been developed which are able to recognize individual differences. Individual-based models are of great use in the areas of aquatic ecology, terrestrial ecology, landscape or physiological ecology, terrestrial ecology, landscape or physiological ecology, and agriculture. This book discusses which biological problems individual-based models can solve, as well as the models' inherent limitations. It explores likely future directions of theoretical development in these models, as well as currently feasible management applications and the best mathematical approaches and computer languages to use. The book also details specific applications to theory and management.
The book focusses on questions of individual and collective action, the emergence and dynamics of social norms and the feedback between individual behaviour and social phenomena. It discusses traditional modelling approaches to social norms and shows the usefulness of agent-based modelling for the study of these micro-macro interactions. Existing agent-based models of social norms are discussed and it is shown that so far too much priority has been given to parsimonious models and questions of the emergence of norms, with many aspects of social norms, such as norm-change, not being modelled. Juvenile delinquency, group radicalisation and moral decision making are used as case studies for agent-based models of collective action extending existing models by providing an embedding into social networks, social influence via argumentation and a causal action theory of moral decision making. The major contribution of the book is to highlight the multifaceted nature of the dynamics of social norms, consisting not only of emergence, and the importance of embedding of agent-based models into existing theory.
Individual-Based Models of Cultural Evolution shows readers how to create individual-based models of cultural evolution using the programming language R. The field of cultural evolution has emerged in the last few decades as a thriving, interdisciplinary effort to understand cultural change and cultural diversity within an evolutionary framework and using evolutionary tools, concepts, and methods. Given its roots in evolutionary biology, much of cultural evolution is grounded in, or inspired by, formal models. Yet many researchers interested in cultural evolution come from backgrounds that lack training in formal modelling, such as psychology, anthropology or archaeology. This book addresses that gap. It provides example code in R for readers to run their own models, moving from very simple models of the basic processes of cultural evolution, such as biased transmission and cultural mutation, to more advanced topics such as the evolution of social learning, demographic effects, and social network analysis. Features of this book: Recreates existing models in the literature to show how these were created and to enable readers to have a better understanding of their significance and how to apply them to their own research questions Provides full R code to realize models and analyse and plot outputs, with line-by-line analysis Requires no previous knowledge of the field of cultural evolution, and only very basic programming knowledge This is an essential resource for researchers and students interested in cultural evolution, including disciplines such as psychology, anthropology, archaeology, and biology as well as sociology and digital humanities.
This reference work breaks new ground as an electronic resource. Utterly comprehensive, it serves as a repository of knowledge in the field as well as a frequently updated conduit of new material long before it finds its way into standard textbooks.
What is a model? How do you construct one? What are some common models in the social sciences? How can models be applied in new situations? What makes a model good? Focusing on answers to these and related questions, this multidisciplinary introduction to model building in the social sciences formulates interesting problems that involve students in creative model building and the process of invention. The book describes models of individual choice, exchange, adaptation, and diffusion. Throughout, student participation in analytical thinking is encouraged. Originally published in 1975 by HarperCollins Publishers.
Recent technological advances in single-cell microbiology, using flow cytometry, microfluidics, x-ray fluorescence microprobes, and single-cell -omics, allow for the observation of individuals within populations. Simultaneously, individual-based models (or more generally agent-based models) allow for individual microbes to be simulated. Bridging these techniques forms the foundation of individual-based ecology of microbes (µIBE). µIBE has elucidated genetic and phenotypic heterogeneity that has important consequences for a number of human interests, including antibiotic or biocide resistance, the productivity and stability of industrial fermentations, the efficacy of food preservatives, and the potential of pathogens to cause disease. Individual-based models can help us to understand how these sets of traits of individual microbes influence the above. This eBook compiles all publications from a recent Research Topic in Frontiers in Microbiology. It features recent research where individual observational and/or modelling techniques are applied to gain unique insights into the ecology of microorganisms. The Research Topic “The Individual Microbe: Single-Cell Analysis and Agent-Based Modelling” arose from the 2016 @ASM conference of the same name hosted by the American Society for Microbiology at its headquarters in Washington, D.C. We are grateful to ASM for funding and hosting this conference.