Download Free Modelling The Dispersion Of Radionuclides Following Short Duration Releases To Rivers Book in PDF and EPUB Free Download. You can read online Modelling The Dispersion Of Radionuclides Following Short Duration Releases To Rivers and write the review.

This book is a practical guide to the subject of numerical modelling of radioactivity dispersion in the marine environment. Thus, the techniques and numerical procedures required are explained in detail, with the aim of enabling the reader to build a real mathematical model. The book covers basic concepts and techniques, such as solving the advection-diffusion equation in a simple 1D form, as well as the most recent developments (full 3D models for non-conservative radionuclides including chemical reactions and speciation). A chapter is dedicated to the basic hydrodynamic modelling that is always required to simulate the dispersion of tracers in the sea; Eulerian and Lagrangian modelling techniques are also described. A chapter describes sensitivity and uncertainty analysis, the final stage in modelling works. A review on some published radionuclide dispersion models is also included. The book also includes a CD-ROM with a Lagrangian dispersion model of the Strait of Gibraltar and several Fortran codes developed by the author which can be used to reproduce some of the cases described in the book.
Radioactive particles have been released to the environment from a number of sources, including nuclear weapon tests, nuclear accidents and discharges from nuclear installations. Particle characteristics influence the mobility, biological uptake and effects of radionuclides, hence information on these characteristics is essential for assessing environmental impact and risks. This publication presents a series of papers covering sources and source term characterisation, methodologies for characterizing particles, and the impact of particles on the behaviour of radioactive particles in the environment. Sources covered include the Chernobyl accident, nuclear weapons accidents at Thule and Palomares accident, the discharges from Dounreay and Krashnoyarsk, and depleted uranium in Kosovo and Kuwait. The overall aim is that an increased understanding of particle characteristics and behavior will help to reduce some of the uncertainties in environmental impact and risk assessment for particle contaminated areas.
Homeostasis and Toxicology of Essential Metals synthesizes the explosion of new information on the molecular, cellular, and organismal handling of metals in fish in the past 15 years. These elements are no longer viewed by fish physiologists as "heavy metals" that kill fish by suffocation, but rather as interesting moieties that enter and leave fish by specific pathways, which are subject to physiological regulation. The metals featured in this volume are those about which there has been most public and scientific concern, and therefore are those most widely studied by fish researchers. Metals such as Cu, Zn, Fe, Ni, Co, Se, Mo and Cr are either proven to be or are strongly suspected to be essential in trace amounts, yet are toxic in higher doses. The companion volume, Homeostasis and Toxicology of Non-Essential Metals, Volume 31B, covers metals that have no known nutritive function in fish at present, but which are toxic at fairly low levels, such as Ag, Al, Cd, Pb, Hg, As, Sr, and U. In addition, three chapters in Volumes 31A and 31B on Basic Principles (Chapter 1, 31A), Field Studies and Ecological Integration (Chapter 9, 31A) and Modeling the Physiology and Toxicology of Metals (Chapter 9, 31B) act as integrative summaries and make these two volumes a vital set for readers. All major essential metals of interest are covered in metal-specific chapters Each metal-specific chapter is written by fish physiologists/toxicologists who are recognized authorities for that metal A common format is featured throughout this two volume edition
Describes an approach for assessing doses to members of the public as part of an environmental impact analysis of predictive radioactive discharges. This is achieved by using screening models which describe environmental processes in mathematical terms, producing a quantitative result.
Radiological Risk Assessment and Environmental Analysis comprehensively explains methods used for estimating risk to people exposed to radioactive materials released to the environment by nuclear facilities or in an emergency such as a nuclear terrorist event. This is the first book that merges the diverse disciplines necessary for estimating where radioactive materials go in the environment and the risk they present to people. It is not only essential to managers and scientists, but is also a teaching text. The chapters are arranged to guide the reader through the risk assessment process, beginning with the source term (where the radioactive material comes from) and ending with the conversion to risk. In addition to presenting mathematical models used in risk assessment, data is included so the reader can perform the calculations. Each chapter also provides examples and working problems. The book will be a critical component of the rebirth of nuclear energy now taking place, as well as an essential resource to prepare for and respond to a nuclear emergency.