Download Free Modelling Of Metal Forming Processes Book in PDF and EPUB Free Download. You can read online Modelling Of Metal Forming Processes and write the review.

The numerical simulation of sheet metal forming processes has become an indispensable tool for the design of components and their forming processes. This role was attained due to the huge impact in reducing time to market and the cost of developing new components in industries ranging from automotive to packing, as well as enabling an improved understanding of the deformation mechanisms and their interaction with process parameters. Despite being a consolidated tool, its potential for application continues to be discovered with the continuous need to simulate more complex processes, including the integration of the various processes involved in the production of a sheet metal component and the analysis of in-service behavior. The quest for more robust and sustainable processes has also changed its deterministic character into stochastic to be able to consider the scatter in mechanical properties induced by previous manufacturing processes. Faced with these challenges, this Special Issue presents scientific advances in the development of numerical tools that improve the prediction results for conventional forming process, enable the development of new forming processes, or contribute to the integration of several manufacturing processes, highlighting the growing multidisciplinary characteristic of this field.
The concept of virtual manufacturing has been developed in order to increase the industrial performances, being one of the most ef cient ways of reducing the m- ufacturing times and improving the quality of the products. Numerical simulation of metal forming processes, as a component of the virtual manufacturing process, has a very important contribution to the reduction of the lead time. The nite element method is currently the most widely used numerical procedure for s- ulating sheet metal forming processes. The accuracy of the simulation programs used in industry is in uenced by the constitutive models and the forming limit curves models incorporated in their structure. From the above discussion, we can distinguish a very strong connection between virtual manufacturing as a general concept, ?nite element method as a numerical analysis instrument and constitutive laws,aswellas forming limit curves as a speci city of the sheet metal forming processes. Consequently, the material modeling is strategic when models of reality have to be built. The book gives a synthetic presentation of the research performed in the eld of sheet metal forming simulation during more than 20 years by the members of three international teams: the Research Centre on Sheet Metal Forming—CERTETA (Technical University of Cluj-Napoca, Romania); AutoForm Company from Zürich, Switzerland and VOLVO automotive company from Sweden. The rst chapter presents an overview of different Finite Element (FE) formu- tions used for sheet metal forming simulation, now and in the past.
Written by authorities in the subject, this book provides a complete treatment of metal forming and machining by using the computational techniques FEM, fuzzy set theory and neural networks as modelling tools. The algorithms and solved examples included make this book of value to postgraduates, senior undergraduates, and lecturers and researchers in these fields. Research and development engineers and consultants for the manufacturing industry will also find it of use.
Functioning as an introduction to modern mechanics principles and various applications that deal with the science, mathematics and technical aspects of sheet metal forming, Mechanics Modeling of Sheet Metal Forming details theoretically sound formulations based on principles of continuum mechanics for finite or large deformation, which can then be implemented into simulation codes. The forming processes of complex panels by computer codes, in addition to extensive practical examples, are recreated throughout the many chapters of this book in order to benefit practicing engineers by helping them better understand the output of simulation software.
This book provides a comprehensive introduction to the unique theory developed over years of research on materials and process modelling and its application in metal forming technologies. It starts with the introduction of fundamental theories on the mechanics of materials, computational mechanics and the formulation of unified constitutive equations. Particular attention is paid to elastic-plastic formulations for cold metal forming and unified elastic-viscoplastic constitutive equations for warm/hot metals processing. Damage in metal forming and numerical techniques to solve and determine the unified constitutive equations are also detailed. Examples are given for the application of the unified theories to solve practical problems encountered in metal forming processes. This is particularly useful to predict microstructure evolution in warm/hot metal forming processes. Crystal plasticity theories and modelling techniques with their applications in micro-forming are also introduced in the book.The book is self-contained and unified in presentation. The explanations are highlighted to capture the interest of curious readers and complete enough to provide the necessary background material to further explore/develop new theories and applications.
Monitoring and control of microstructure evolution in metal processing is essential in developing the right properties in a metal. Microstructure evolution in metal forming processes summarises the wealth of recent research on the mechanisms, modelling and control of microstructure evolution during metal forming processes.Part one reviews the general principles involved in understanding and controlling microstructure evolution in metal forming. Techniques for modelling microstructure and optimising processes are explored, along with recrystallisation, grain growth, and severe plastic deformation. Microstructure evolution in the processing of steel is the focus of part two, which reviews the modelling of phase transformations in steel, unified constitutive equations and work hardening in microalloyed steels. Part three examines microstructure evolution in the processing of other metals, including ageing behaviour in the processing of aluminium and microstructure control in processing nickel, titanium and other special alloys.With its distinguished editors and international team of expert contributors, Microstructure evolution in metal forming processes is an invaluable reference tool for metal processors and those using steels and other metals, as well as an essential guide for academics and students involved in fundamental metal research. - Summarises the wealth of recent research on the mechanisms, modelling and control of microstructure evolution during metal forming processes - Comprehensively discusses microstructure evolution in the processing of steel and reviews the modelling of phase transformations in steel, unified constitutive equations and work hardening in microalloyed steels - Examines microstructure evolution in the processing of other materials, including ageing behaviour in the processing of aluminium
This book deals with metal processing and its numerical modelling and simulation. In total, 21 papers from different distinguished authors have been compiled in this area. Various processes are addressed, including solidification, TIG welding, additive manufacturing, hot and cold rolling, deep drawing, pipe deformation, and galvanizing. Material models are developed at different length scales from atomistic simulation to finite element analysis in order to describe the evolution and behavior of materials during thermal and thermomechanical treatment. Materials under consideration are carbon, Q&T, DP, and stainless steels; ductile iron; and aluminum, nickel-based, and titanium alloys. The developed models and simulations shall help to predict structure evolution, damage, and service behavior of advanced materials.
Descripción del editor: "heet forming fundamentals are thoroughly addressed in this comprehensive reference for the practical and efficient use of sheet forming technologies. The principle variables of sheet forming-including the interactions between variables-are clearly explained, as a basic foundation for the most effective use of computer aided modeling in process and die design.Topics include stress analysis, formability criteria, tooling, and materials for sheet forming. The book also covers the latest developments in sheet metal forming technology, including servo-drive presses and their applications, and advanced cushion systems in mechanical and hydraulic presses." (ASM International).
Modeling of Thermo-Electro-Mechanical Manufacturing Processes with Applications in Metal Forming and Resistance Welding provides readers with a basic understanding of the fundamental ingredients in plasticity, heat transfer and electricity that are necessary to develop and proper utilize computer programs based on the finite element flow formulation. Computer implementation of a wide range of theoretical and numerical subjects related to mesh generation, contact algorithms, elasticity, anisotropic constitutive equations, solution procedures and parallelization of equation solvers is comprehensively described. Illustrated and enriched with selected examples obtained from industrial applications, Modeling of Thermo-Electro-Mechanical Manufacturing Processes with Applications in Metal Forming and Resistance Welding works to diminish the gap between the developers of finite element computer programs and the professional engineers with expertise in industrial joining technologies by metal forming and resistance welding.
Metal Forming: Formability, Simulation, and Tool Design focuses on metal formability, finite element modeling, and tool design, providing readers with an integrated overview of the theory, experimentation and practice of metal forming. The book includes formability and finite element topics, including insights on plastic instability, necking, nucleation and coalescence of voids. Chapters discuss the finite element method, including its accuracy, reliability and validity and finite element flow formulation, helping readers understand finite element formulations, iterative solution methods, friction and contact between objects, and other factors. The book's final sections discuss tool design for cold, warm and hot forming processes. Examples of tools, design guidelines, and information related to tool materials, lubricants, finishes, and tool failure are included as well. Provides fundamental, integrated knowledge on metal formability, finite element topics and tool design Outlines user perspectives on accuracy, reliability and validity of finite element modeling Discusses examples of tools, their design guidelines, tool lubricants, and tool failure Considers the role played by stress triaxiality and shear and introduces uncoupled ductile damage criteria Includes applications, worked examples and detailed techniques