Download Free Modelling Interception And Transpiration At Monthly Time Steps Book in PDF and EPUB Free Download. You can read online Modelling Interception And Transpiration At Monthly Time Steps and write the review.

The book presents improved equations for monthly water resources models, in particular for interception and transpiration. Most of the existing monthly models do not make a distinction between interception and transipiration, while this distinction is very important for management purposes. Interception is direct feedback to the atmosphere, important to sustain rainfall. Transpiration is a good indicator for plant growth and biomass production. This distinction also contributes to the estimation of recharge and therewith of runoff.;The derivations are based on the Markov theory for the occurrence of rain-days. The methodology can be used on the basis of an analysis of a few time series of daily data, at a spatial scale of 300km and not necessarily of the same period as the monthly data. Zimbabwe served as the case study, but derived equations can be used worldwide as long as the relationship between the monthly rainfall and the mean number of rain-days can be established.
This book provides essential background knowledge on a wide range of hydrological processes governing contaminant transport from soil to surface water across a range of scales, from hillslope to watershed. The mathematical description of these processes is based on both well-known and unique analytical solutions of different initial and boundary problems (primarily using methods from the kinematic wave theory and the reservoir/lumped-parameter concept), supported by numerical modelling studies. Some research topics, in particular several case studies, are illustrated by monitoring and experimental data analysis to show the importance of the research’s applications in environmental practice and environmental education. Specific results concern the recognition of: (a) the effect of transient rainfall–runoff–infiltration partitioning on the chemical response of drainage areas to excess precipitation under certain field conditions related to the soil, hillslope characteristics, and contaminant properties; (b) soil erosion as a key factor that enhances the potential of adsorbed chemical transport in runoff; and (c) common tendencies in radionuclide behaviour in the near-surface environment contaminated by radioactive fallout from the Chernobyl (1986), Fukushima (2011) and the less known Kyshtym (1957) accidents, as well as from nuclear weapon tests in the atmosphere since 1952. The book’s goal is to provide a conceptual foundation enabling readers to apply scientific knowledge to solve practical problems in environmental hydrology and radiology. More specifically, the book presents the state-of-the-art approaches that scientists and natural resources experts need in order to significantly improve the prediction of changes in the soil–water system chemistry due to human activities.
Forests cover approximately 26% of the world's land surface area and represent a distinct biotic community. They interact with water and soil in a variety of ways, providing canopy surfaces which trap precipitation and allow evaporation back into the atmosphere, thus regulating how much water reaches the forest floor as through fall, as well as pull water from the soil for transpiration. The discipline "forest hydrology" has been developed throughout the 20th century. During that time human intervention in natural landscapes has increased, and land use and management practices have intensified. The book will be useful for graduate students, professionals, land managers, practitioners, and researchers with a good understanding of the basic principles of hydrology and hydrologic processes.
Food process modelling provides an authoritative review of one of the most exciting and influential developments in the food industry. The modelling of food processes allows analysts not only to understand such processes more clearly but also to control them more closely and make predictions about them. Modelling thus aids the search for greater and more consistent food quality. Written by a distinguished international team of experts, Food process modelling covers both the range of modelling techniques and their practical applications across the food chain.
Having grappled with the question of modernisation for a long time, Africa now faces an issue that, with an increasingly knowledge-based global economy, has only become more urgent in this new millennium. This volume examines Africa's scientific and technological literacy, production and consumption, focusing in detail on the constraints and challenges, opportunities and developments, and the strategies required to promote the advancement of IT and biotechnology in Africa, to help advance our understanding of science and technology developments in Africa.
The Proceeding contains the following sections: i) Groundwater Exploration and Exploitation; (ii) RS&GIS Applications in Water Resources; (iii) Watershed Management: Hydrological, Socio-Economic and Cultural Models; (iv) Water and Wastewater Treatment Technologies; (v) Rainwater Harvesting and Rural and Urban Water Supplies; (vi) Floods, Reservoir Sedimentation and Seawater Intrusion; (vii) Water Quality, Pollution and Environment; (viii) Irrigation Management; (ix) Water Logging and Water Productivity in Agriculture; (x) Groundwater Quality; (xi) Hydrologic Parameter Estimation and Modelling; (xii) Climate Change, Water, Food and Environmental Security; (xiii) Groundwater Recharge and Modelling; (xiv) Computational Methods in Hydrology; (xv) Soil and Water Conservation Technologies.
Repeated measurements during the crop cycle allow monitoring of the sufficiency of actual management practices. Introducing estimated or forecast weather data in crop growth calculations for the remainder of the crop cycle permits to make repeated estimates of anticipated crop production and to timely signal a need for remedial action.
Remote Sensing of the Terrestrial Water Cycle is an outcome of the AGU Chapman Conference held in February 2012. This is a comprehensive volume that examines the use of available remote sensing satellite data as well as data from future missions that can be used to expand our knowledge in quantifying the spatial and temporal variations in the terrestrial water cycle. Volume highlights include: - An in-depth discussion of the global water cycle - Approaches to various problems in climate, weather, hydrology, and agriculture - Applications of satellite remote sensing in measuring precipitation, surface water, snow, soil moisture, groundwater, modeling, and data assimilation - A description of the use of satellite data for accurately estimating and monitoring the components of the hydrological cycle - Discussion of the measurement of multiple geophysical variables and properties over different landscapes on a temporal and a regional scale Remote Sensing of the Terrestrial Water Cycle is a valuable resource for students and research professionals in the hydrology, ecology, atmospheric sciences, geography, and geological sciences communities.
Rainfall-Runoff Modelling: The Primer, Second Edition is the follow-up of this popular and authoritative text, first published in 2001. The book provides both a primer for the novice and detailed descriptions of techniques for more advanced practitioners, covering rainfall-runoff models and their practical applications. This new edition extends these aims to include additional chapters dealing with prediction in ungauged basins, predicting residence time distributions, predicting the impacts of change and the next generation of hydrological models. Giving a comprehensive summary of available techniques based on established practices and recent research the book offers a thorough and accessible overview of the area. Rainfall-Runoff Modelling: The Primer Second Edition focuses on predicting hydrographs using models based on data and on representations of hydrological process. Dealing with the history of the development of rainfall-runoff models, uncertainty in mode predictions, good and bad practice and ending with a look at how to predict future catchment hydrological responses this book provides an essential underpinning of rainfall-runoff modelling topics. Fully revised and updated version of this highly popular text Suitable for both novices in the area and for more advanced users and developers Written by a leading expert in the field Guide to internet sources for rainfall-runoff modelling software