Download Free Modelling Charge And Exciton Transport In Polymeric And Molecular Systems Book in PDF and EPUB Free Download. You can read online Modelling Charge And Exciton Transport In Polymeric And Molecular Systems and write the review.

As functional elements in opto-electronic devices approach the singlemolecule limit, conducting organic molecular wires are the appropriate interconnects that enable transport of charges and charge-like particles such as excitons within the device. Reproducible syntheses and a thorough understanding of the underlying principles are therefore indispensable for applications like even smaller transistors, molecular machines and light-harvesting materials. Bringing together experiment and theory to enable applications in real-life devices, this handbook and ready reference provides essential information on how to control and direct charge transport. Readers can therefore obtain a balanced view of charge and exciton transport, covering characterization techniques such as spectroscopy and current measurements together with quantitative models. Researchers are thus able to improve the performance of newly developed devices, while an additional overview of synthesis methods highlights ways of producing different organic wires. Written with the following market in mind: chemists, molecular physicists, materials scientists and electrical engineers.
The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.
The performance of organic semiconductor devices is heavily dependent on the precise molecular-level arrangement and overall morphology of the functional layers. In organic photovoltaic applications, exciton mobility, fission/fusion or dissociation, as well as charge transport and separation are some of the morphology-dependent processes that are of interest for efficient device design. In this work a combination of experimental and computational techniques are used to elucidate the behaviour of excitons in conjugated polymer and small-molecule semiconductor systems. While there is an emphasis on photovoltaic applications, many concepts are generally applicable to other organic electronic applications such organic light emitting diodes and photodetectors. In Chapter 3, a pump-push-probe transient absorption technique is used to observe high-energy "hot" excitons formed by photoexcitation of the conjugated polymer poly(3-hexylthiophene) (P3HT). The work demonstrates the ability to clearly isolate the transient signal of the hot exciton decay processes from the thermalised exciton population, where picosecond and sub-picosecond relaxation of hot excitons through torsional motion in the disordered polymer chain is observed. In addition, the push-induced dissociation of high-energy excitons into free charge carriers is able to be quantified and an upper bound on the exciton binding energy determined. Spectroscopic experiments on P3HT are accompanied by a hybrid quantum-classical exciton hopping model in Chapter 4. Coarse-grained molecular dynamics are used to obtain realistic structures of P3HT free chains and nanofibre aggregates, to which a Frenkel-Holstein exciton model and Monte Carlo hopping simulation is applied. This novel approach captures exciton transport properties of polymer systems with a monomer-level of detail unachievable with continuum or lattice style models, but at a large scale infeasible with fully quantum calculations. Reasonable quantitative agreement with experimental observables is obtained, offering insight into the morphology-dependence of exciton transport in conjugated polymers. In particular, the observed tendency for exciton migration to the core of the polymer aggregate can explain the relatively poor performance of highly crystalline or nanofibre-based polymer solar cells, as well as the unusually high fluorescence yield of aqueous P3HT nanoparticles. The effect of disorder in small molecule semiconductor films is investigated in Chapter 5 in the context of singlet exciton fission and triplet fusion under the influence of applied magnetic fields. A model is presented that extends the historical theory of molecular spin interactions in crystalline materials and corrects the current understanding in the literature regarding such disordered solid-phase systems. The possibility of using the fluorescence response to magnetic fields to probe the morphology and degree disorder in the films is demonstrated. Extending the model to solution-phase behaviour is then discussed in Chapter 6, where the potential of improving the light-harvesting ability of solar cells through a molecular triplet-triplet annihilation upconversion process is considered. Molecular dynamics simulations are used to obtain physical parameters and collision geometry of the emitter molecules in solution. The complications of applying a static model of triplet fusion to the dynamic solution-phase behaviour are elucidated and the potential of synthesising an ideal upconversion emitter molecule is discussed.
This 3rd edition has been expanded and updated to account for recent developments, while new illustrative examples as well as an enlarged reference list have also been added. It naturally retains the successful concept of its predecessors in presenting a unified perspective on molecular charge and energy transfer processes, thus bridging the regimes of coherent and dissipative dynamics, and establishing a connection between classic rate theories and modern treatments of ultrafast phenomena. Among the new topics are: - Time-dependent density functional theory - Heterogeneous electron transfer, e.g. between molecules and metal or semiconductor surfaces - Current flows through a single molecule. While serving as an introduction for graduate students and researchers, this is equally must-have reading for theoreticians and experimentalists, as well as an aid to interpreting experimental data and accessing the original literature.
Conjugated polymers have important technological applications, including solar cells and light emitting devices. They are also active components in many important biological processes. In recent years there have been significant advances in our understanding of these systems, owing to both improved experimental measurements and the development of advanced computational techniques. The aim of this book is to describe and explain the electronic and optical properties of conjugated polymers. It focuses on the three key roles of electron-electron interactions, electron-nuclear coupling, and disorder in determining the character of the electronic states, and it relates these properties to experimental observations in real systems. A number of important optical and electronic processes in conjugated polymers are also described. The second edition has a more extended discussion of excitons in conjugated polymers. There is also a new chapter on the static and dynamical localization of excitons.
With the technological advancement of modern society, electronic devices are getting progressively more integrated in our everyday lives. Their continuouslygrowing presence is generating numerous concerns about costs, efficiency and the environmental impact of the electronic waste. In this context, organic electronics is finding its way through the market, allowing for potentially low-cost, light, flexible, transparent and environmentally friendly electronics. Despite the numerous successes of organic electronics, the functioning of several categories of organic devices still represents a technological challenge, due to problems like low efficiencies and stabilities (degradation over time). Organic devices are composed by one or more organic materials depending on the particular application. The conformation and electronic structure of the organic molecules as well as their supramolecular arrangement in the single phase or at the interface are known to strongly a affect the mobility and/or the efficiency of the device. While there is consensus on the fundamental physics of organic devices, we still lack a detailed comprehensive theory able to fully explain experimental data. In this thesis we focus on trying to expand our knowledge of charge transport in organic materials through theoretical modelling and simulation of organic electronic devices. While the methodology developed is generally valid for any organic device, we will particularly focus on the case represented by organic photovoltaics. The morphology of the system is obtained by molecular dynamics simulations. Marcus theory is used to calculate the hopping rate of the charge carriers and subsequently study the possibility of free charge carriers production in an organic solar cell. The theory is then compared both with Kinetic Monte Carlo simulations and with experiments to identify the main pitfalls of the actual theory and ways to improve it. The Marcus rate between two molecules depends on the molecular orbital energies, the transfer integral between the two molecules and the reorganization energy. The orbital energies and the transfer integrals between two neighbouring molecules are obtained through quantum mechanical calculations in vacuum. Electrostatic effects of the environment are included through atomic charges and atomic polarizabilities, producing a correction both to the orbital energy and to the reorganization energy. We have studied several systems in the single phase (polyphenylene vinylene, C60, PC61BM) and at the interface between two organic materials (anthracene/C60, TQ1/PC71BM). We show how a combination of different methodologies can be used to obtain a realistic ab-initio model of organic devices taking into account environmental effects. This allows us to obtain qualitative agreement with experimental data of mobility in the single phase and to determine whether or not two materials are suitable to be used together in an organic solar cell.
Materials have the potential to be the centrepiece for the transition to viable renewable energy technologies and this book provides a perspective on the application of new technologies to this field as well as the broader techno-economic and social context.
Chemical modelling covers a wide range of disciplines and this book is the first stop for any materials scientist, biochemist, chemist or molecular physicist wishing to acquaint themselves with major developments in the applications and theory of chemical modelling. Containing both comprehensive and critical reviews, it is a convenient reference to the current literature. Coverage includes, but is not limited to, isomerism in polyoxometalate chemistry, modelling molecular magnets, molecular modelling of cyclodextrin inclusion complexes and graphene nanoribbons heterojunctions.