Download Free Modelling And Simulation On Microcomputers 9 Book in PDF and EPUB Free Download. You can read online Modelling And Simulation On Microcomputers 9 and write the review.

Fibre (rod) and sheet-shaped crystals with specified size for use as final products without additional machining are required in various applications of modern engineering. In order to avoid formation of internal mechanical stress in the crystal, lateral surface shaping without contact with container walls is preferred. As the crystal is not restricted by crucible walls, its cross-section is determined by the meniscus-shaping capillary forces and the heat and mass-exchange in the melt-crystal system. Any variation of the pulling rate, pressure, temperature gradient in the furnace, and melt temperature at the meniscus base leads to a change in the crystal cross-section and to pinch formation. Over the past two decades, many experimental and theoretical studies have been reported on a powerful approach to crystal lateral surface shaping without contact with container walls, namely the so-called edge-defined film-fed growth (EFG) technique. The shape and size of a single crystal grown by EFG is determined by the shape and size of the meniscus, (i.e: the liquid bridge retained between the die and the crystal) which depend on the radius or half-thickness of the die and other properties such as pulling rate, pressure, temperature gradient and melt temperature. In this book, theoretical and numerical results are obtained using a non-linear mathematical model of the EFG method. Theoretical results presented for fibres and sheets are rigorously obtained on the basis of the equations of the model. Numerical results are obtained on the basis of theoretical results using experimental data. Such results offer a complete package of the possibilities of the model for equipment designers and practical crystal growers.
The first chapter provides an overview of the development of a novel agent-based simulation model of socio-environmental innovation diffusion. The second chapter shows the study about rendering of colours with three rendering engines. The third and fourth chapters are devoted to modelling clothes at different levels. The fifth chapter describes the modelling of computer simulation in the optimization of bioprocess technology. Chapters 6 and 7 formulate a physical model of deformation of steel and idea of constructing a scientific workshop focused on high-temperature processes. Chapter 8 formulates surrogate models. Chapter 9 shows computer simulation of high-frequency electromagnetic fields. Chapter 10 proposes the modelling of the task allocation problem by the use of Petri Nets. Chapter 11 presents various scenarios whose ranking is done according to defined criteria and weight coefficients.
"The Encyclopedia of Microcomputers serves as the ideal companion reference to the popular Encyclopedia of Computer Science and Technology. Now in its 10th year of publication, this timely reference work details the broad spectrum of microcomputer technology, including microcomputer history; explains and illustrates the use of microcomputers throughout academe, business, government, and society in general; and assesses the future impact of this rapidly changing technology."
As computers become more complex, the number and complexity of the tasks facing the computer architect have increased. Computer performance often depends in complex way on the design parameters and intuition that must be supplemented by performance studies to enhance design productivity. This book introduces computer architects to computer system performance models and shows how they are relatively simple, inexpensive to implement, and sufficiently accurate for most purposes. It discusses the development of performance models based on queuing theory and probability. The text also shows how they are used to provide quick approximate calculations to indicate basic performance tradeoffs and narrow the range of parameters to consider when determining system configurations. It illustrates how performance models can demonstrate how a memory system is to be configured, what the cache structure should be, and what incremental changes in cache size can have on the miss rate. A particularly deep knowledge of probability theory or any other mathematical field to understand the papers in this volume is not required.