Download Free Modelling And Analysis Of Resource Management Schemes In Wireless Networks Book in PDF and EPUB Free Download. You can read online Modelling And Analysis Of Resource Management Schemes In Wireless Networks and write the review.

Over recent years, wireless communication systems have been experiencing a dramatic and continuous growth in the number of subscribers, thus placing extra demands on system capacity. At the same time, keeping Quality of Service (QoS) at an acceptable level is a critical concern and a challenge to the wireless network designer. In this sense, performance analysis must be the first step in designing or improving a network. Thus, powerful mathematical tools for analysing most of the performance metrics in the network are required. A good modelling and analysis of the wireless cellular networks will lead to a high level of QoS. In this thesis, different analytical models of various handoff schemes and resource re-allocation in homogeneous and heterogeneous wireless cellular networks are developed and investigated. The sustained increase in users and the request for advanced services are some of the key motivations for considering the designing of Hierarchical Cellular Networks (HCN). In this type of system, calls can be blocked in a microcell flow over to an overlay macrocell. Microcells in the HCN can be replaced by WLANs as this can provide high bandwidth and its users have limited mobility features. Efficient sharing of resources between wireless cellular networks and WLANs will improve the capacity as well as QoS metrics. This thesis first presents an analytical model for priority handoff mechanisms, where new calls and handoff calls are captured by two different traffic arrival processes, respectively. Using this analytical model, the optimised number of channels assigned to handover calls, with the aim of minimising the drop probability under given network scenarios, has been investigated. Also, an analytical model of a network containing two cells has been developed to measure the different performance parameters for each of the cells in the network, as well as altogether as one network system. Secondly, a new solution is proposed to manage the bandwidth and re-allocate it in a proper way to maintain the QoS for all types of calls. Thirdly, performance models for microcells and macrocells in hierarchical cellular networks have been developed by using a combination of different handoff schemes. Finally, the microcell in HCN is replaced by WLANs and a prioritised vertical handoff scheme in an integrated UMTS/WLAN network has been developed. Simulation experiments have been conducted to validate the accuracy of these analytical models. The models have then been used to investigate the performance of the networks under different scenarios.
Over recent years, wireless communication systems have been experiencing a dramatic and continuous growth in the number of subscribers, thus placing extra demands on system capacity. At the same time, keeping Quality of Service (QoS) at an acceptable level is a critical concern and a challenge to the wireless network designer. In this sense, performance analysis must be the first step in designing or improving a network. A good modelling and analysis of the wireless cellular networks will lead to a high level of QoS. In this book, different analytical models of various handoff schemes and resource re-allocation in homogeneous and heterogeneous wireless cellular networks are developed and investigated. The sustained increase in users and the request for advanced services are some of the key motivations for considering the designing of Hierarchical Cellular Networks (HCN). In HCN, calls blocked in a microcell flow over to an overlay macrocell. Microcells can be replaced by WLANs as this can provide high bandwidth and its users have limited mobility features. Efficient sharing of resources between wireless cellular networks and WLANs will improve the capacity as well as QoS metrics.
This brief offers a valuable resource on principles of quality-of-service (QoS) provisioning and the related link-layer resource management techniques for high data-rate wireless networks. The primary emphasis is on protocol modeling and analysis. It introduces media access control (MAC) protocols, standards of wireless local area networks (WLANs), wireless personal area networks (WPANs), and wireless body area networks (WBANs), discussing their key technologies, applications, and deployment scenarios. The main analytical approaches and models for performance analysis of the fundamental resource scheduling mechanisms, including the contention-based, reservation-based, and hybrid MAC, are presented. To help readers understand and evaluate system performance, the brief contains a range of simulation results. In addition, a thorough bibliography provides an additional tool. This brief is an essential resource for engineers, researchers, students, and users of wireless networks.
ABSTRACT: The remarkable growth of wireless communication networks and the increasing demand for diverse and reliable services over the air interface have created the need for robust and survivable design and management of wireless networks and its performance analysis. This research develops a configurable teletraffic simulator for survivability analysis of wireless access networks under the normal as well as faulty conditions. The framework consists of subscriber traffic layer and radio traffic layer for user location, mobility, and network model and resource management schemes. The concept of a geographical data set has been introduced and processed with trip estimation technique for representing spatial environmental information. Overlapping coverage area has been selected as cell-site architecture to improve the resilience of the mobile networks. Dynamic load-balancing protocols have been proposed as a means to increase mobile network survivability and compared with a commonly referenced scheme. The framework has been implemented with C++ and is modeled after cellular communication networks in aspects of network functionality and measurement of real teletraffic characteristics. The applicability of the simulated framework is demonstrated in a case study of fault traffic conditions in traffic hot-spot and failed channel group.
This book provides an in-depth discussion on how to efficiently manage resources of heterogeneous wireless networks and how to design resource allocation algorithms to suit real world conditions. Efficiently managing resources of the networks is more crucial now, than ever before, to meet users’ rapidly increasing demand for higher data rates, better quality-of-service (QoS) and seamless coverage. Some of the techniques that can be incorporated within heterogeneous wireless networks to achieve this objective are interworking of the networks, user multi-homing and device-to-device (D2D) communication. Designing resource allocation algorithms to suit real world conditions is also important, as the algorithms should be deployable and perform well in real networks. For example, two of the conditions considered in this book are resource allocation intervals of different networks are different and small cell base stations have limited computational capacity. To address the first condition, resource allocation algorithms for interworking systems are designed to allocate resources of different networks at different time-scales. To address the second condition, resource allocation algorithms are designed to be able to run at cloud computing servers. More of such conditions, algorithms designed to suit these conditions, modeling techniques for various networks and performance analysis of the algorithms are discussed in the book. This book concludes with a discussion on the future research directions on the related fields of study. Advanced-level students focused on communication and networking will use this book as a study guide. Researchers and experts in the fields of networking, converged networks, small-cell networks, resource management, and interference management, as well as consultants working in network planning and optimization and managers, executives and network architects working in the networking industry will also find this book useful as a reference.
This book allows readers to gain an in-depth understanding of resource allocation problems in wireless networks and the techniques used to solve them.
Modeling and Simulation of Computer Networks and Systems: Methodologies and Applications introduces you to a broad array of modeling and simulation issues related to computer networks and systems. It focuses on the theories, tools, applications and uses of modeling and simulation in order to effectively optimize networks. It describes methodologies for modeling and simulation of new generations of wireless and mobiles networks and cloud and grid computing systems. Drawing upon years of practical experience and using numerous examples and illustrative applications recognized experts in both academia and industry, discuss: Important and emerging topics in computer networks and systems including but not limited to; modeling, simulation, analysis and security of wireless and mobiles networks especially as they relate to next generation wireless networks Methodologies, strategies and tools, and strategies needed to build computer networks and systems modeling and simulation from the bottom up Different network performance metrics including, mobility, congestion, quality of service, security and more... Modeling and Simulation of Computer Networks and Systems is a must have resource for network architects, engineers and researchers who want to gain insight into optimizing network performance through the use of modeling and simulation. Discusses important and emerging topics in computer networks and Systems including but not limited to; modeling, simulation, analysis and security of wireless and mobiles networks especially as they relate to next generation wireless networks Provides the necessary methodologies, strategies and tools needed to build computer networks and systems modeling and simulation from the bottom up Includes comprehensive review and evaluation of simulation tools and methodologies and different network performance metrics including mobility, congestion, quality of service, security and more
With the diversification of Internet services and the increase in mobile users, efficient management of network resources has become an extremely important issue in the field of wireless communication networks (WCNs). Adaptive resource management is an effective tool for improving the economic efficiency of WCN systems as well as network design and construction, especially in view of the surge in mobile device demands. This book presents modelling methods based on queueing theory and Markov processes for a wide variety of WCN systems, as well as precise and approximate analytical solution methods for the numerical evaluation of the system performance. This is the first book to provide an overview of the numerical analyses that can be gleaned by applying queueing theory, traffic theory and other analytical methods to various WCN systems. It also discusses the recent advances in the resource management of WCNs, such as broadband wireless access networks, cognitive radio networks, and green cloud computing. It assumes a basic understanding of computer networks and queueing theory, and familiarity with stochastic processes is also recommended. The analysis methods presented in this book are useful for first-year-graduate or senior computer science and communication engineering students. Providing information on network design and management, performance evaluation, queueing theory, game theory, intelligent optimization, and operations research for researchers and engineers, the book is also a valuable reference resource for students, analysts, managers and anyone in the industry interested in WCN system modelling, performance analysis and numerical evaluation.
This authoritative resource offers a comprehensive overview of heterogeneous wireless networks, small cells, and device-to-device (D2D) communications. The book provides insight into network modeling and performance analysis of heterogeneous wireless networks. Interference management framework and design issues are covered as well as details about resource mobility, channel models, and typical and statistical interference modeling. This resource explains leveraging resource heterogeneity in interference mitigation and presents the challenges and feasible solutions for concurrent transmission. Moreover, complete coverage of interference alignment in MIMO heterogeneous networks for both downlink and uplink is presented. This book provides performance results for an ideal partially connected interference network as well as a practical heterogeneous network. Readers find practical guidance for LTE and LTE-Advanced as well as 5G in this resource. New techniques and designs for heterogeneous wireless networks are included.
This book reports the latest advances on the design and development of mobile computing systems, describing their applications in the context of modeling, analysis and efficient resource management. It explores the challenges on mobile computing and resource management paradigms, including research efforts and approaches recently carried out in response to them to address future open-ended issues. The book includes 26 rigorously refereed chapters written by leading international researchers, providing the readers with technical and scientific information about various aspects of mobile computing, from basic concepts to advanced findings, reporting the state-of-the-art on resource management in such environments. It is mainly intended as a reference guide for researchers and practitioners involved in the design, development and applications of mobile computing systems, seeking solutions to related issues. It also represents a useful textbook for advanced undergraduate and graduate courses, addressing special topics such as: mobile and ad-hoc wireless networks; peer-to-peer systems for mobile computing; novel resource management techniques in cognitive radio networks; and power management in mobile computing systems.