Download Free Modeling Volatility In Option Pricing With Applications Book in PDF and EPUB Free Download. You can read online Modeling Volatility In Option Pricing With Applications and write the review.

Bachelorarbeit aus dem Jahr 2010 im Fachbereich BWL - Investition und Finanzierung, Note: 1,2, EBS Universität für Wirtschaft und Recht, Sprache: Deutsch, Abstract: The Black-Scholes (or Black-Scholes-Merton) Model has become the standard model for the pricing of options and can surely be seen as one of the main reasons for the growth of the derivative market after the model ́s introduction in 1973. As a consequence, the inventors of the model, Robert Merton, Myron Scholes, and without doubt also Fischer Black, if he had not died in 1995, were awarded the Nobel prize for economics in 1997. The model, however, makes some strict assumptions that must hold true for accurate pricing of an option. The most important one is constant volatility, whereas empirical evidence shows that volatility is heteroscedastic. This leads to increased mispricing of options especially in the case of out of the money options as well as to a phenomenon known as volatility smile. As a consequence, researchers introduced various approaches to expand the model by allowing the volatility to be non-constant and to follow a sto-chastic process. It is the objective of this thesis to investigate if the pricing accuracy of the Black-Scholes model can be significantly improved by applying a stochastic volatility model.
Statistics
This book demonstrates the power of neural networks in learning complex behavior from the underlying financial time series data. The results presented also show how neural networks can successfully be applied to volatility modeling, option pricing, and value-at-risk modeling. These features mean that they can be applied to market-risk problems to overcome classic problems associated with statistical models.
This book addresses the applications of Fourier transform to smile modeling. Smile effect is used generically by ?nancial engineers and risk managers to refer to the inconsistences of quoted implied volatilities in ?nancial markets, or more mat- matically, to the leptokurtic distributions of ?nancial assets and indices. Therefore, a sound modeling of smile effect is the central challenge in quantitative ?nance. Since more than one decade, Fourier transform has triggered a technical revolution in option pricing theory. Almost all new developed option pricing models, es- cially in connection with stochastic volatility and random jump, have extensively applied Fourier transform and the corresponding inverse transform to express - tion pricing formulas. The large accommodation of the Fourier transform allows for a very convenient modeling with a general class of stochastic processes and d- tributions. This book is then intended to present a comprehensive treatment of the Fourier transform in the option valuation, covering the most stochastic factors such as stochastic volatilities and interest rates, Poisson and Levy ́ jumps, including some asset classes such as equity, FX and interest rates, and providing numerical ex- ples and prototype programming codes. I hope that readers will bene?t from this book not only by gaining an overview of the advanced theory and the vast large l- erature on these topics, but also by gaining a ?rst-hand feedback from the practice on the applications and implementations of the theory.
This thesis presents our study on using the hybrid stochastic-local volatility model for option pricing. Many researchers have demonstrated that stochastic volatility models cannot capture the whole volatility surface accurately, although the model parameters have been calibrated to replicate the market implied volatility data for near at-the-money strikes. On the other hand, the local volatility model can reproduce the implied volatility surface, whereas it does not consider the stochastic behaviour of the volatility. To combine the advantages of stochastic volatility (SV) and local volatility (LV) models, a class of stochastic-local volatility (SLV) models has been developed. The SLV model contains a stochastic volatility component represented by a volatility process and a local volatility component represented by a so-called leverage function. The leverage function can be roughly seen as a ratio between local volatility and conditional expectation of stochastic volatility. The difficulty of implementing the SLV model lies in the calibration of the leverage function. In the thesis, we first review the fundamental theories of stochastic differential equations and the classic option pricing models, and study the behaviour of the volatility in the context of FX market. We then introduce the SLV model and illustrate our implementation of the calibration and pricing procedure. We apply the SLV model to exotic option pricing in the FX market and compare pricing results of the SLV model with pure local volatility and pure stochastic volatility models. Numerical results show that the SLV model can match the implied volatility surface very well as well as improve the pricing performance for barrier options. In addition, we further discuss some extensions of the SLV project, such as parallelization potential for accelerating option pricing and pricing techniques for window barrier options. Although the SLV model we use in the thesis is not entirely new, we contribute to the research in the following aspects: 1) we investigate the hybrid volatility modeling thoroughly from theoretical backgrounds to practical implementations; 2) we resolve some critical issues in implementing the SLV model such as developing a fast and stable numerical method to derive the leverage function; and 3) we build a robust calibration and pricing platform under the SLV model, which can be extended for practical uses.
This is one of the only books to describe uncertain volatility models in mathematical finance and their computer implementation for portfolios of vanilla, barrier and American options in equity and FX markets. Uncertain volatility models place subjective constraints on the volatility of the stochastic process of the underlying asset and evaluate option portfolios under worst- and best-case scenarios. This book, which is bundled with software, is aimed at graduate students, researchers and practitioners who wish to study advanced aspects of volatility risk in portfolios of vanilla and exotic options. The reader is assumed to be familiar with arbitrage pricing theory.
This comprehensive guide offers traders, quants, and students the tools and techniques for using advanced models for pricing options. The accompanying website includes data files, such as options prices, stock prices, or index prices, as well as all of the codes needed to use the option and volatility models described in the book. Praise for Option Pricing Models & Volatility Using Excel-VBA "Excel is already a great pedagogical tool for teaching option valuation and risk management. But the VBA routines in this book elevate Excel to an industrial-strength financial engineering toolbox. I have no doubt that it will become hugely successful as a reference for option traders and risk managers." —Peter Christoffersen, Associate Professor of Finance, Desautels Faculty of Management, McGill University "This book is filled with methodology and techniques on how to implement option pricing and volatility models in VBA. The book takes an in-depth look into how to implement the Heston and Heston and Nandi models and includes an entire chapter on parameter estimation, but this is just the tip of the iceberg. Everyone interested in derivatives should have this book in their personal library." —Espen Gaarder Haug, option trader, philosopher, and author of Derivatives Models on Models "I am impressed. This is an important book because it is the first book to cover the modern generation of option models, including stochastic volatility and GARCH." —Steven L. Heston, Assistant Professor of Finance, R.H. Smith School of Business, University of Maryland
Option pricing -- Seasonality -- Volatility -- GARCH -- Kurtosis -- Bootstrap -- Brownian motion -- Black-Scholes.
This book provides different financial models based on options to predict underlying asset price and design the risk hedging strategies. Authors of the book have made theoretical innovation to these models to enable the models to be applicable to real market. The book also introduces risk management and hedging strategies based on different criterions. These strategies provide practical guide for real option trading. This book studies the classical stochastic volatility and deterministic volatility models. For the former, the classical Heston model is integrated with volatility term structure. The correlation of Heston model is considered to be variable. For the latter, the local volatility model is improved from experience of financial practice. The improved local volatility surface is then used for price forecasting. VaR and CVaR are employed as standard criterions for risk management. The options trading strategies are also designed combining different types of options and they have been proven to be profitable in real market. This book is a combination of theory and practice. Users will find the applications of these financial models in real market to be effective and efficient.