Download Free Modeling Uncertainties In Dc Dc Converters With Matlabr And Plecsr Book in PDF and EPUB Free Download. You can read online Modeling Uncertainties In Dc Dc Converters With Matlabr And Plecsr and write the review.

Modeling is the process of formulating a mathematical description of the system. A model, no matter how detailed, is never a completely accurate representation of a real physical system. A mathematical model is always just an approximation of the true, physical reality of the system dynamics. Uncertainty refers to the differences or errors between model and real systems and whatever methodology is used to present these errors will be called an uncertainty model. Successful robust control-system design would depend on, to a certain extent, an appropriate description of the perturbation considered. Modeling the uncertainties in the switch mode DC-DC converters is an important step in designing robust controllers. This book studies different techniques which can be used to extract the uncertain model of DC-DC converters. Once the uncertain model is extracted, robust control techniques such as ∞ and μ synthesis can be used to design the robust controller. The book composed of two case studies. The first one is a buck converter and the second one is a Zeta converter. MATLAB® programming is used extensively throughout the book. Some sections use PLECS® as well. This book is intended to be guide for both academicians and practicing engineers.
Simulation of Power Electronics Converters Using PLECS® is a guide to simulating a power electronics circuit using the latest powerful software for power electronics circuit simulation purposes. This book assists engineers gain an increased understanding of circuit operation so they can, for a given set of specifications, choose a topology, select appropriate circuit component types and values, estimate circuit performance, and complete the design by ensuring that the circuit performance will meet specifications even with the anticipated variations in operating conditions and circuit component values. This book covers the fundamentals of power electronics converter simulation, along with an analysis of power electronics converters using PLECS. It concludes with real-world simulation examples for applied content, making this book useful for all those in the electrical and electronic engineering field. - Contains unique examples on the simulation of power electronics converters using PLECS® - Includes explanations and guidance on all included simulations for re-doing the simulations - Incorporates analysis and design for rapidly creating power electronics circuits with high accuracy
Feedback control systems is an important course in aerospace engineering, chemical engineering, electrical engineering, mechanical engineering, and mechatronics engineering, to name just a few. Feedback control systems improve the system's behavior so the desired response can be achieved. The first course on control engineering deals with Continuous Time (CT) Linear Time Invariant (LTI) systems. Plenty of good textbooks on the subject are available on the market, so there is no need to add one more. This book does not focus on the control engineering theories as it is assumed that the reader is familiar with them, i.e., took/takes a course on control engineering, and now wants to learn the applications of MATLAB® in control engineering. The focus of this book is control engineering applications of MATLAB® for a first course on control engineering.
Measurement is the process of obtaining the magnitude of a quantity relative to an agreed standard. Electronic measurement, which is the subject of this book, is the measurement of electronic quantities like voltage, current, resistance, inductance, and capacitance, to name a few. This book provides practical information concerning the techniques in electronic measurements and knowledge on how to use the electronic measuring instruments appropriately. The book is composed of five chapters. Chapter 1 focuses on digital multimeters. You will learn how to use it for measurement of AC/DC voltages/currents, resistance, connection test, and diode forward voltage drop test. Chapter 2 focuses on power supplies. Although power supplies are not a measurement device, they have an undeniable role in many measurements. So, being able to use power supplies correctly is quite important. Chapter 3 focuses on function generators. Like the power supplies, the function generators are not a measurement device in the first look. However, they play a very important role in many electronic measurements. So, being able to use a function generator correctly is an important skill any technician or engineer needs. Chapter 4 focuses on oscilloscopes. These days, digital oscilloscopes are the most commonly used tool in both industry and university. Because of this, this chapter focuses on digital oscilloscopes not on the analog ones which are almost obsolete. Chapter 5 focuses on drawing graph of data you obtained from your measurement. Visualization of data is very important in practical works. This chapter show how you can use MATLAB® for drawing the graph of your measurements. This book could be used a laboratory supplement for students of electrical/mechanical/mechatronics engineering, for technicians in the field of electrical/electronics engineering, and for anyone who is interested to make electronic circuits.
While there are many books on advanced control for specialists, there are few that present these topics for nonspecialists. Assuming only a basic knowledge of automatic control and signals and systems, Optimal and Robust Control: Advanced Topics with MATLAB® offers a straightforward, self-contained handbook of advanced topics and tools in automatic control. Techniques for Controlling System Performance in the Presence of Uncertainty The book deals with advanced automatic control techniques, paying particular attention to robustness—the ability to guarantee stability in the presence of uncertainty. It explains advanced techniques for handling uncertainty and optimizing the control loop. It also details analytical strategies for obtaining reduced order models. The authors then propose using the Linear Matrix Inequalities (LMI) technique as a unifying tool to solve many types of advanced control problems. Topics covered include: LQR and H-infinity approaches Kalman and singular value decomposition Open-loop balancing and reduced order models Closed-loop balancing Passive systems and bounded-real systems Criteria for stability control This easy-to-read text presents the essential theoretical background and provides numerous examples and MATLAB exercises to help the reader efficiently acquire new skills. Written for electrical, electronic, computer science, space, and automation engineers interested in automatic control, this book can also be used for self-study or for a one-semester course in robust control.
This Fifth Edition includes new sections on electric vehicle loads and the impact they have on voltage drop and transformers in distribution systems. A new and improved tape-shield cable model has been developed to produce more accurate impedance modeling of underground cables. In addition, the book uses state-of-the-art software, including the power distribution simulation software Milsoft WindMil® and programming language Mathworks MATLAB®. MATLAB scripts have been developed for all examples in the text, in addition to new MATLAB-based problems at the end of the chapters. This book illustrates methods that ensure the most accurate results in computational modeling for electric power distribution systems. It clearly explains the principles and mathematics behind system models and discusses the smart grid concept and its special benefits. Including numerous models of components and several practical examples, the chapters demonstrate how engineers can apply and customize computer programs to help them plan and operate systems. The book also covers approximation methods to help users interpret computer program results and includes references and assignments that help users apply MATLAB and WindMil programs to put their new learning into practice.
Power electronics systems are nonlinear variable structure systems. They involve passive components such as resistors, capacitors, and inductors, semiconductor switches such as thyristors and MOSFETs, and circuits for control. The analysis and design of such systems presents significant challenges. Fortunately, increased availability of powerful computer and simulation programs makes the analysis/design process much easier. PSIM® is an electronic circuit simulation software package, designed specifically for use in power electronics and motor drive simulations but can be used to simulate any electronic circuit. With fast simulation speed and user friendly interface, PSIM provides a powerful simulation environment to meed the user simulation and development needs. This book shows how to simulate the power electronics circuits in PSIM environment. The prerequisite for this book is a first course on power electronics. This book is composed of eight chapters: Chapter 1 is an introduction to PSIM. Chapter 2 shows the fundamentals of circuit simulation with PSIM. Chapter 3 introduces the SimviewTM. Simview is PSIM’s waveform display and post-processing program. Chapter 4 introduces the most commonly used components of PSIM. Chapter 5 shows how PSIM can be used for analysis of power electronics circuits. 45 examples are studied in this chapter. Chapter 6 shows how you can simulate motors and mechanical loads in PSIM. Chapter 7 introduces the SimCouplerTM. Simcoupler fuses PSIM with Simulink® by providing an interface for co-simulation. Chapter 8 introduces the SmartCtrl®. SmartCtrl is a controller design software specifically geared towards power electronics applications. https://powersimtech.com/2021/10/01/book-release-power-electronics-circuit-analysis-with-psim/
With a simple approach that includes real-time applications and algorithms, this book covers the theory of model predictive control (MPC).
Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in ‎robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of grid-connected converters and ‎smart control of power electronics in devices, microgrids, and at system levels.
The only method of circuit analysis known to most engineers and students is nodal or loop analysis. Although this works well for obtaining numerical solutions, it is almost useless for obtaining analytical solutions in all but the simplest cases. In this unusual 2002 book, Vorpérian describes remarkable alternative techniques to solve, almost by inspection, complicated linear circuits in symbolic form and obtain meaningful analytical answers for any transfer function or impedance. Although not intended to replace traditional computer-based methods, these techniques provide engineers with a powerful set of tools for tackling circuit design problems. They also have great value in enhancing students' understanding of circuit operation, making this an ideal course book, and numerous problems and worked examples are included. Originally developed by Professor David Middlebrook and others at Caltech (California Institute of Technology), the techniques described here are now widely taught at institutions and companies around the world.