Download Free Modeling Two Dimensional Infrared Spectroscopy Of Hydrogen Bonded Systems Book in PDF and EPUB Free Download. You can read online Modeling Two Dimensional Infrared Spectroscopy Of Hydrogen Bonded Systems and write the review.

It is no overstatement to claim that hydrogen bonding is the most important intermolecular interaction. On a day-to-day basis, we encounter the peculiar effects of hydrogen bonding in liquid water; however, it is well appreciated that hydrogen bonding is immensely important in many contexts and, in particular, in biological ones. Despite this apparent significance, a general molecular picture of the dynamics of hydrogen-bonding systems is lacking. Over the last two decades, ultrafast multidimensional infrared spectroscopy has emerged as powerful technique for studying molecular dynamics in the condensed phase. By taking advantage of the complex relationship between a molecular oscillator's frequency and its environmental structure, we may understand molecular dynamics from an experimental perspective. However, the study of hydrogen bonding poses a significant technical challenge in that the interaction gives rise to broad resonances in the mid-infrared absorption spectrum. Traditional methods for generating short pulses of mid-infrared light are fundamentally limited in the bandwidth they can produce. Oftentimes, the width of a hydrogen-bonded oscillator's absorption resonance exceeds the broadest bandwidth mid-infrared laser pulse. In this thesis, I describe our development and use of a novel source of short, broadband mid-infrared light pulses that span the entire region of high-frequency molecular vibrations. We use this source as a probe in two-dimensional infrared spectroscopy experiments to study a wide variety hydrogen-bonding systems, including hydrogen-bonded dimers and protein films, with a particular emphasis on liquid water. Across these systems, we observe fascinating trends in the changes in molecular dynamics with increasing complexity of hydrogen bonding. In particular, we find experimental evidence for large deformations of the nuclear potential energy surface, giving rise to extremely anharmonic and collective dynamics. The effect is most dramatic in liquid water, where the rapidly fluctuating hydrogen-bond network results in vibrational excitons wherein O-H stretching motion is delocalized over multiple molecules. In this case, the nuclear potential energy surface is so complex that even simple changes in the mass of the oscillators result in qualitatively different dynamics.
The structure and structural dynamics of hydrogen bonded liquids were studied experimentally and theoretically with coherent two-dimensional infrared (2DIR) spectroscopy. The resonant intermolecular interactions within the fully resonant hydrogen bond networks give access to spatial correlations in the dynamics of the liquid structures. New experimental and theoretical tools were developed that significantly reduced the technical challenges of these studies. A nanofluidic flow device was designed and manufactured providing sub-micron thin, actively stabilized liquid sample layers between similarly thin windows. A simulation protocol for nonlinear vibrational response calculations of disordered fluctuating vibrational excitons was developed that allowed for the first treatment of resonant intermolecular interactions in the 2DIR response of liquid water. The 2DIR spectrum of the O-H stretching vibration of pure liquid water was studied experimentally at different temperatures. At ambient conditions the loss of frequency correlations is extremely fast, and is attributed to very efficient modulations of the two-dimensional O-H stretching vibrational potential through librational motions in the hydrogen bond network. At temperatures near freezing, the librational motions are significantly reduced leading to a pronounced slowing down of spectral diffusion dynamics. Comparison with energy transfer time scales revealed the first direct proof of delocalization of the vibrational excitations. This work establishes a fundamentally new view of vibrations in liquid water by providing a spatial length scale of correlated hydrogen-bond motions. The linear and 2DIR response of the amide I mode in neat liquid formamide was found to be dominated by excitonic effects due to largely delocalized vibrational excitations. The spectral response and dynamics are very sensitive to the excitonic mode structure and infrared activity distributions, leading to a pronounced asymmetry of linear and 2DIR line shapes. This was attributed to structurally different species in the liquid characterized by their degree of medium range structural order. The response is dominated by energy transfer effects, sensitive to time-averaged medium range structural order, while being essentially insensitive to structural dynamics. This work is the first to recognize the importance of energy transfer contributions to the 2DIR response in a liquid, and provides additional proof of the well-structured character of liquid formamide.
Comprehensive spectroscopic view of the state-of the-art in theoretical and experimental hydrogen bonding research Spectroscopy and Computation of Hydrogen-Bonded Systems includes diverse research efforts spanning the frontiers of hydrogen bonding as revealed through state-of-the-art spectroscopic and computational methods, covering a broad range of experimental and theoretical methodologies used to investigate and understand hydrogen bonding. The work explores the key quantitative relationships between fundamental vibrational frequencies and hydrogen-bond length/strength and provides an extensive reference for the advancement of scientific knowledge on hydrogen-bonded systems. Theoretical models of vibrational landscapes in hydrogen-bonded systems, as well as kindred studies designed to interpret intricate spectral features in gaseous complexes, liquids, crystals, ices, polymers, and nanocomposites, serve to elucidate the provenance of spectroscopic findings. Results of experimental and theoretical studies on multidimensional proton transfer are also presented. Edited by two highly qualified researchers in the field, sample topics covered in Spectroscopy and Computation of Hydrogen-Bonded Systems include: Quantum-mechanical treatments of tunneling-mediated pathways in enzyme catalysis and molecular-dynamics simulations of structure and dynamics in hydrogen-bonded systems Mechanisms of multiple proton-transfer pathways in hydrogen-bonded clusters and modern spectroscopic tools with synergistic quantum-chemical analyses Mechanistic investigations of deuterium kinetic isotope effects, ab initio path integral methods, and molecular-dynamics simulations Key relationships that exist between fundamental vibrational frequencies and hydrogen-bond length/strength Analogous spectroscopic and semi-empirical computational techniques examining larger hydrogen-bonded systems Reflecting the polymorphic nature of hydrogen bonding and bringing together the latest experimental and computational work in the field, Spectroscopy and Computation of Hydrogen-Bonded Systems is an essential resource for chemists and other scientists involved in projects or research that intersects with the topics covered within.
The advent of laser-based sources of ultrafast infrared pulses has extended the study of very fast molecular dynamics to the observation of processes manifested through their effects on the vibrations of molecules. In addition, non-linear infrared spectroscopic techniques make it possible to examine intra- and intermolecular interactions and how such interactions evolve on very fast time scales, but also in some instances on very slow time scales. Ultrafast Infrared Vibrational Spectroscopy is an advanced overview of the field of ultrafast infrared vibrational spectroscopy based on the scientific research of the leading figures in the field. The book discusses experimental and theoretical topics reflecting the latest accomplishments and understanding of ultrafast infrared vibrational spectroscopy. Each chapter provides background, details of methods, and explication of a topic of current research interest. Experimental and theoretical studies cover topics as diverse as the dynamics of water and the dynamics and structure of biological molecules. Methods covered include vibrational echo chemical exchange spectroscopy, IR-Raman spectroscopy, time resolved sum frequency generation, and 2D IR spectroscopy. Edited by a recognized leader in the field and with contributions from top researchers, including experimentalists and theoreticians, this book presents the latest research methods and results. It will serve as an excellent resource for those new to the field, experts in the field, and individuals who want to gain an understanding of particular methods and research topics.
Remarkable developments in the spectroscopy field regarding ultrashort pulse generation have led to the possibility of producing light pulses ranging from 50 to5 fs and frequency tunable from the near infrared to the ultraviolet range. Such pulses enable us to follow the coupling of vibrational motion to the electronic transitions in molecules and
This work describes a phenomenological approach for modeling linear and nonlinear infrared spectroscopy of condensed phase chemical systems, focusing on applications to strongly hydrogen bonded complexes. To overcome the limitations inherent in common analytical models, I construct full time trajectories for spectroscopic variables, here the vibrational frequencies and transition dipole moments, and use these as inputs to calculate the system response to an applied electric field. This method identifies key dynamical variables, treats these stochastically, and then constructs trajectories of spectroscopic variables from these stochastic quantities through mappings. The correspondence of such fluctuating coordinates and spectroscopic observables is demonstrated for a number of simple cases not adequately addressed using current approximations, including liquid water, strong hydrogen bonds, and proton transfer reactions using ab initio calculations, model potentials, and molecular dynamics. Dynamical information is bestowed upon these trajectories through either a Langevin-like Brownian oscillator model for the bath, full molecular dynamics calculations, or experimentally motivated empirical formulae. Utilizing the semiclassical approximation for the linear and nonlinear response functions, these constructed trajectories give us the ability to numerically calculate nonlinear spectroscopy to examine phenomena previously difficult with other methods, including non-Gaussian dynamics, correlated occurrences, highly anharmonic potentials, and complex system-bath relationships.