Download Free Modeling The Thermoelectric Properties Of Bulk And Nanocomposite Thermoelectric Materials Book in PDF and EPUB Free Download. You can read online Modeling The Thermoelectric Properties Of Bulk And Nanocomposite Thermoelectric Materials and write the review.

For the efficient utilization of energy resources and the minimization of environmental damage, thermoelectric materials can play an important role by converting waste heat into electricity directly. Nanostructured thermoelectric materials have received much attention recently due to the potential for enhanced properties associated with size effects and quantum confinement. Nanoscale Thermoelectrics describes the theory underlying these phenomena, as well as various thermoelectric materials and nanostructures such as carbon nanotubes, SiGe nanowires, and graphene nanoribbons. Chapters written by leading scientists throughout the world are intended to create a fundamental bridge between thermoelectrics and nanotechnology, and to stimulate readers' interest in developing new types of thermoelectric materials and devices for power generation and other applications. Nanoscale Thermoelectrics is both a comprehensive introduction to the field and a guide to further research, and can be recommended for Physics, Electrical Engineering, and Materials Science departments.
Comprising two volumes, Thermoelectrics and Its Energy Harvesting reviews the vast improvements in technology and application of thermoelectric energy with a specific intention to reduce and reuse waste heat and improve novel techniques for the efficient acquisition and use of energy.Materials, Preparation, and Characterization in Thermoelectrics i
As the human population expands and natural resources become depleted, it becomes necessary to explore other sources for energy consumption and usage. Renewable and Alternative Energy: Concepts, Methodologies, Tools, and Applications provides a comprehensive overview of emerging perspectives and innovations for alternative energy sources. Highlighting relevant concepts on energy efficiency, current technologies, and ongoing industry trends, this is an ideal reference source for academics, practitioners, professionals, and upper-level students interested in the latest research on renewable energy.
How can you design good thermoelectric materials? This book covers thermoelectric material concepts and synthesis techniques in particular focusing methods for enhancing current materials designs to achieve the greatest thermoelectric efficiencies. This book is ideal for researchers and advanced students of materials science, physics, and energy.
Thermoelectrics: Design and Materials HoSung Lee, Western Michigan University, USA A comprehensive guide to the basic principles of thermoelectrics Thermoelectrics plays an important role in energy conversion and electronic temperature control. The book comprehensively covers the basic physical principles of thermoelectrics as well as recent developments and design strategies of materials and devices. The book is divided into two sections: the first section is concerned with design and begins with an introduction to the fast developing and multidisciplinary field of thermoelectrics. This section also covers thermoelectric generators and coolers (refrigerators) before examining optimal design with dimensional analysis. A number of applications are considered, including solar thermoelectric generators, thermoelectric air conditioners and refrigerators, thermoelectric coolers for electronic devices, thermoelectric compact heat exchangers, and biomedical thermoelectric energy harvesting systems. The second section focuses on materials, and covers the physics of electrons and phonons, theoretical modeling of thermoelectric transport properties, thermoelectric materials, and nanostructures. Key features: Provides an introduction to a fast developing and interdisciplinary field. Includes detailed, fundamental theories. Offers a platform for advanced study. Thermoelectrics: Design and Materials is a comprehensive reference ideal for engineering students, as well as researchers and practitioners working in thermodynamics. Cover designed by Yujin Lee
Wearable electronics, wireless devices, and other mobile technologies have revealed a deficit and a necessity for innovative methods of gathering and utilizing power. Drawing on otherwise wasted sources of energy, such as solar, thermal, and biological, is an important part of discovering future energy solutions. Innovative Materials and Systems for Energy Harvesting Applications reports on some of the best tools and technologies available for powering humanity’s growing thirst for electronic devices, including piezoelectric, solar, thermoelectric, and electromagnetic energies. This book is a crucial reference source for academics, industry professionals, and scientists working toward the future of energy.
This book includes updated theoretical considerations which provide an insight into avenues of research most likely to result in further improvements in material performance. It details the latest techniques for the preparation of thermoelectric materials employed in energy harvesting, together with advances in the thermoelectric characterisation of nanoscale material. The book reviews the use of neutron beams to investigate phonons, whose behaviour govern the lattice thermal conductivity and includes a chapter on patents.
This book provides a concise but comprehensive introduction to the fundamentals and current state of the art in thermoelectrics. Addressing an audience of materials scientists and engineers, the book covers theory, materials selection, and applications, with a wide variety of case studies reflecting the most up-to-date research approaches from the past decade, from single crystal to polycrystalline form and from bulk to thin films to nano dimensions. The world is facing major challenges for finding alternate energy sources that can satisfy the increasing demand for energy consumption while preserving the environment. The field of thermoelectrics has long been recognized as a potential and ideal source of clean energy. However, the relatively low conversion efficiency of thermoelectric devices has prevented their utility on a large scale. While addressing the need for thermal management in materials, device components, and systems, thermoelectrics provides a fundamental solution to waste heat recovery and temperature control. This book summarizes the global efforts that have been made to enhance the figure of merit of various thermoelectric materials by choosing appropriate processes and their influence on properties and performance. Because of these advances, today, thermoelectric devices are found in mainstream applications such as automobiles and power generators, as opposed to just a few years ago when they could only be used in niche applications such as in aeronautics, infrared imaging, and space. However, the continued gap between fundamental theoretical results and actual experimental data of figure of merit and performance continues to challenge the commercial applications of thermoelectrics. This book presents both recent achievements and continuing challenges, and represents essential reading for researchers working in this area in universities, industry, and national labs.
Polymer Composites with Functional Nanoparticles: Synthesis, Properties, and Applications reviews the latest research in the area of polymer nanocomposites and functionalized nanoparticles, providing an introduction for those new to the field, and supporting further research and development. The book helps researchers and practitioners better understand the key role of nanoparticle functionalization for improving the compatibility of inorganic metallic nanomaterials with organic polymers, and for the fabrication of nanostructured materials with special properties. A range of nanoparticles, such as carbon nanotubes are covered, along with descriptions of the methods of functionalization to support better compatibility with polymer matrices. The book also discusses the various applications of this technology, including uses in electronics and the medical and energy industries. - Summarizes the latest research in functionalized nanoparticles for modification of polymer matrices, providing a valuable platform for further research - Includes functionalization of a range of nanoparticles for incorporation into nanocomposites, including carbon nanotubes, graphene, gold and silver, silica and clay - Provides detailed coverage of application areas, including energy, electronics, biomedical applications, and end-of-life considerations
Your guide to advanced thermoelectric materials Written by a distinguished group of contributors, this book provides comprehensive coverage of the most up-to-date information on all aspects of advanced thermoelectric materials — ranging from system biology, diagnostics, imaging, image-guided therapy, therapeutics, biosensors, and translational medicine and personalized medicine, as well as the much broader task of covering most topics of biomedical research.