Download Free Modeling The Heart And The Circulatory System Book in PDF and EPUB Free Download. You can read online Modeling The Heart And The Circulatory System and write the review.

The book comprises contributions by some of the most respected scientists in the field of mathematical modeling and numerical simulation of the human cardiocirculatory system. The contributions cover a wide range of topics, from the preprocessing of clinical data to the development of mathematical equations, their numerical solution, and both in-vivo and in-vitro validation. They discuss the flow in the systemic arterial tree and the complex electro-fluid-mechanical coupling in the human heart. Many examples of patient-specific simulations are presented. This book is addressed to all scientists interested in the mathematical modeling and numerical simulation of the human cardiocirculatory system.
Addresses the mathematical and numerical modelling of the human cardiovascular system, from patient data to clinical applications.
Mathematical models and numerical simulations can aid the understanding of physiological and pathological processes. This book offers a mathematically sound and up-to-date foundation to the training of researchers and serves as a useful reference for the development of mathematical models and numerical simulation codes.
This presentation describes various aspects of the regulation of tissue oxygenation, including the roles of the circulatory system, respiratory system, and blood, the carrier of oxygen within these components of the cardiorespiratory system. The respiratory system takes oxygen from the atmosphere and transports it by diffusion from the air in the alveoli to the blood flowing through the pulmonary capillaries. The cardiovascular system then moves the oxygenated blood from the heart to the microcirculation of the various organs by convection, where oxygen is released from hemoglobin in the red blood cells and moves to the parenchymal cells of each tissue by diffusion. Oxygen that has diffused into cells is then utilized in the mitochondria to produce adenosine triphosphate (ATP), the energy currency of all cells. The mitochondria are able to produce ATP until the oxygen tension or PO2 on the cell surface falls to a critical level of about 4–5 mm Hg. Thus, in order to meet the energetic needs of cells, it is important to maintain a continuous supply of oxygen to the mitochondria at or above the critical PO2 . In order to accomplish this desired outcome, the cardiorespiratory system, including the blood, must be capable of regulation to ensure survival of all tissues under a wide range of circumstances. The purpose of this presentation is to provide basic information about the operation and regulation of the cardiovascular and respiratory systems, as well as the properties of the blood and parenchymal cells, so that a fundamental understanding of the regulation of tissue oxygenation is achieved.
"Modeling has provided not only answers to questions related to normal or pathological function but also predicted multiple adaptations of the total and individual dynamic structures that are included in cardiovascular research. The original idea of this book was to produce a textbook to be used for the course 'Modeling in Biomechanics and Mechanobiology', which is oriented to Artificial Organs and Tissue Engineering at Buenos Aires University, Argentina. This book brings together the challenges and experiences of academic scientists, leading engineers, industry researchers and students to enable them to analyse results of all aspects of biomechanics and biomedical engineering. It also provides a springboard to discuss the practical challenges and to propose solutions on this complex subject." -- Prové de l'editor.
The book “Mechatronics: Recent Technological and Scientific Advances” provides comprehensive and accessible coverage of the evolving disciplines of mechatronics for nanotechnology, automatic control & robotics, biomedical engineering, design manufacturing and testing of MEMS, metrology, photonics, mechatronic products majors. It is already the third volume following the previous editions in 2007 and 2009 providing a recent state of advances in mechatronics presented on the 9th International Conference Mechatronics 2011, hosted this year at the Faculty of Mechatronics, Warsaw University of Technology, Poland. The carefully selected contributions give an insight into the current development of these scientific disciplines, present the new results of research and development and indicate the trends of development in the interdisciplinary field of mechatronics systems. Even though many people believe that the presence of mechanical, electrical, electronic components, and computers make a system mechatronics, others do not feel the same as there is nothing wrong with the individual identity. The enclosed material is original, and reflects the main research tendencies and developments in mechatronics among Mechatronics 2011 contributing countries. It helps to acquire the mix of skills needed to comprehend and design mechatronic systems and also provides with the frame of understanding to develop a truly interdisciplinary and integrated approach to engineering. The enclosed material is original, and reflects the main research tendencies and developments in mechatronics among Mechatronics 2011 contributing countries. It helps to acquire the mix of skills needed to comprehend and design mechatronic systems and also provides with the frame of understanding to develop a truly interdisciplinary and integrated approach to engineering.
This book offers a mathematical update of the state of the art of the research in the field of mathematical and numerical models of the circulatory system. It is structured into different chapters, written by outstanding experts in the field. Many fundamental issues are considered, such as: the mathematical representation of vascular geometries extracted from medical images, modelling blood rheology and the complex multilayer structure of the vascular tissue, and its possible pathologies, the mechanical and chemical interaction between blood and vascular walls, and the different scales coupling local and systemic dynamics. All of these topics introduce challenging mathematical and numerical problems, demanding for advanced analysis and efficient simulation techniques, and pay constant attention to applications of relevant clinical interest. This book is addressed to graduate students and researchers in the field of bioengineering, applied mathematics and medicine, wishing to engage themselves in the fascinating task of modeling the cardiovascular system or, more broadly, physiological flows.
This extensively revised second edition traces the development of the basic concepts in cardiovascular physiology in light of the accumulated experimental and clinical evidence. It considers the early embryonic circulation, where blood circulation suggests the existence of a motive force, tightly coupled to the metabolic demands of the tissues. It proposes that rather than being an organ of propulsion, the heart, serves as an organ of control, generating pressure by rhythmically impeding blood flow. New and expanded chapters cover the arterial pulse, circulation in the upright posture, microcirculation and functional heart morphology. Heart and Circulation offers a new perspective for deeper understanding of the human cardiovascular system. It is therefore a thought-provoking resource for cardiologists, cardiac surgeons and trainees interested in models of human circulation.
Peter Hunter Computational physiology for the cardiovascular system is entering a new and exciting phase of clinical application. Biophysically based models of the human heart and circulation, based on patient-specific anatomy but also informed by po- lation atlases and incorporating a great deal of mechanistic understanding at the cell, tissue, and organ levels, offer the prospect of evidence-based diagnosis and treatment of cardiovascular disease. The clinical value of patient-specific modeling is well illustrated in application areas where model-based interpretation of clinical images allows a more precise analysis of disease processes than can otherwise be achieved. For example, Chap. 6 in this volume, by Speelman et al. , deals with the very difficult problem of trying to predict whether and when an abdominal aortic aneurysm might burst. This requires automated segmentation of the vascular geometry from magnetic re- nance images and finite element analysis of wall stress using large deformation elasticity theory applied to the geometric model created from the segmentation. The time-varying normal and shear stress acting on the arterial wall is estimated from the arterial pressure and flow distributions. Thrombus formation is identified as a potentially important contributor to changed material properties of the arterial wall. Understanding how the wall adapts and remodels its material properties in the face of changes in both the stress loading and blood constituents associated with infl- matory processes (IL6, CRP, MMPs, etc.