Download Free Modeling Simulation And Visual Analysis Of Crowds Book in PDF and EPUB Free Download. You can read online Modeling Simulation And Visual Analysis Of Crowds and write the review.

Over the last several years there has been a growing interest in developing computational methodologies for modeling and analyzing movements and behaviors of ‘crowds' of people. This interest spans several scientific areas that includes Computer Vision, Computer Graphics, and Pedestrian Evacuation Dynamics. Despite the fact that these different scientific fields are trying to model the same physical entity (i.e. a crowd of people), research ideas have evolved independently. As a result each discipline has developed techniques and perspectives that are characteristically their own. The goal of this book is to provide the readers a comprehensive map towards the common goal of better analyzing and synthesizing the pedestrian movement in dense, heterogeneous crowds. The book is organized into different parts that consolidate various aspects of research towards this common goal, namely the modeling, simulation, and visual analysis of crowds. Through this book, readers will see the common ideas and vision as well as the different challenges and techniques, that will stimulate novel approaches to fully grasping “crowds."
Research into the methods and techniques used in simulating crowds has developed extensively within the last few years, particularly in the areas of video games and film. Despite recent impressive results when simulating and rendering thousands of individuals, many challenges still exist in this area. The comparison of simulation with reality, the realistic appearance of virtual humans and their behavior, group structure and their motion, and collision avoidance are just some examples of these challenges. For most of the applications of crowds, it is now a requirement to have real-time simulations – which is an additional challenge, particularly when crowds are very large. Crowd Simulation analyses these challenges in depth and suggests many possible solutions. Daniel Thalmann and Soraia Musse share their experiences and expertise in the application of: · Population modeling · Virtual human animation · Behavioral models for crowds · The connection between virtual and real crowds · Path planning and navigation · Visual attention models · Geometric and populated semantic environments · Crowd rendering The second edition presents techniques and methods developed since the authors first covered the simulation of crowds in 2007. Crowd Simulation includes in-depth discussions on the techniques of path planning, including a new hybrid approach between navigation graphs and potential-based methods. The importance of gaze attention – individuals appearing conscious of their environment and of others – is introduced, and a free-of-collision method for crowds is also discussed.
This three-volume set (CCIS 1367-1368) constitutes the refereed proceedings of the 5th International Conference on Computer Vision and Image Processing, CVIP 2020, held in Prayagraj, India, in December 2020. Due to the COVID-19 pandemic the conference was partially held online. The 134 papers papers were carefully reviewed and selected from 352 submissions. The papers present recent research on such topics as biometrics, forensics, content protection, image enhancement/super-resolution/restoration, motion and tracking, image or video retrieval, image, image/video processing for autonomous vehicles, video scene understanding, human-computer interaction, document image analysis, face, iris, emotion, sign language and gesture recognition, 3D image/video processing, action and event detection/recognition, medical image and video analysis, vision-based human GAIT analysis, remote sensing, and more.
The proceedings set LNCS 13231, 13232, and 13233 constitutes the refereed proceedings of the 21st International Conference on Image Analysis and Processing, ICIAP 2022, which was held during May 23-27, 2022, in Lecce, Italy, The 168 papers included in the proceedings were carefully reviewed and selected from 307 submissions. They deal with video analysis and understanding; pattern recognition and machine learning; deep learning; multi-view geometry and 3D computer vision; image analysis, detection and recognition; multimedia; biomedical and assistive technology; digital forensics and biometrics; image processing for cultural heritage; robot vision; etc.
This practically-focused book presents a computational model for detection and analysis of pedestrian features in crowds from video sequences. The study of human behavior is a subject of great scientific interest and probably an inexhaustible source of research. The analysis of pedestrians and groups in crowds is relevant in several areas of application, such as security, entertainment, environmental and public spaces planning and social sciences. Cultural and personality aspects are attributes that can influence personal behavior and affect the group in which individuals belong. In this sense, we consider different ways of characterizing individuals and groups in crowds with respect to their relationship with the geometrical space and time. We discuss and describe an approach to extract and analyse, from the Computer Science point of view, emotions, personalities and cultural aspects from crowds and groups of pedestrians, using Computer Vision techniques. Extracting characteristics from real pedestrians and crowds, benefits other areas, such as: architecture and design (planning spaces to maximize pedestrian and group-environment fit); security and surveillance (design of evacuation plans considering characteristics of the crowds and detection of abnormal events); entertainment (more realistic crowds in movies and games reproducing characteristics from real pedestrians and crowds); social sciences (understanding of human behavior), among others. A big challenge in this area of research is the comparison with real life data. In this book, we successfully compared the results of the proposed approach with Psychology literature, where several studies aimed to analysis human behavior.
Group and Crowd Behavior for Computer Vision provides a multidisciplinary perspective on how to solve the problem of group and crowd analysis and modeling, combining insights from the social sciences with technological ideas in computer vision and pattern recognition. The book answers many unresolved issues in group and crowd behavior, with Part One providing an introduction to the problems of analyzing groups and crowds that stresses that they should not be considered as completely diverse entities, but as an aggregation of people. Part Two focuses on features and representations with the aim of recognizing the presence of groups and crowds in image and video data. It discusses low level processing methods to individuate when and where a group or crowd is placed in the scene, spanning from the use of people detectors toward more ad-hoc strategies to individuate group and crowd formations. Part Three discusses methods for analyzing the behavior of groups and the crowd once they have been detected, showing how to extract semantic information, predicting/tracking the movement of a group, the formation or disaggregation of a group/crowd and the identification of different kinds of groups/crowds depending on their behavior. The final section focuses on identifying and promoting datasets for group/crowd analysis and modeling, presenting and discussing metrics for evaluating the pros and cons of the various models and methods. This book gives computer vision researcher techniques for segmentation and grouping, tracking and reasoning for solving group and crowd modeling and analysis, as well as more general problems in computer vision and machine learning. - Presents the first book to cover the topic of modeling and analysis of groups in computer vision - Discusses the topics of group and crowd modeling from a cross-disciplinary perspective, using social science anthropological theories translated into computer vision algorithms - Focuses on group and crowd analysis metrics - Discusses real industrial systems dealing with the problem of analyzing groups and crowds
The two volume set LNCS 13052 and 13053 constitutes the refereed proceedings of the 19th International Conference on Computer Analysis of Images and Patterns, CAIP 2021, held virtually, in September 2021. The 87 papers presented were carefully reviewed and selected from 129 submissions. The papers are organized in the following topical sections across the 2 volumes: 3D vision, biomedical image and pattern analysis; machine learning; feature extractions; object recognition; face and gesture, guess the age contest, biometrics, cryptography and security; and segmentation and image restoration.
The two-volume set of LNCS 11941 and 11942 constitutes the refereed proceedings of the 8th International Conference on Pattern Recognition and Machine Intelligence, PReMI 2019, held in Tezpur, India, in December 2019. The 131 revised full papers presented were carefully reviewed and selected from 341 submissions. They are organized in topical sections named: Pattern Recognition; Machine Learning; Deep Learning; Soft and Evolutionary Computing; Image Processing; Medical Image Processing; Bioinformatics and Biomedical Signal Processing; Information Retrieval; Remote Sensing; Signal and Video Processing; and Smart and Intelligent Sensors.
Computer Vision for Assistive Healthcare describes how advanced computer vision techniques provide tools to support common human needs, such as mental functioning, personal mobility, sensory functions, daily living activities, image processing, pattern recognition, machine learning and how language processing and computer graphics cooperate with robotics to provide such tools. Users will learn about the emerging computer vision techniques for supporting mental functioning, algorithms for analyzing human behavior, and how smart interfaces and virtual reality tools lead to the development of advanced rehabilitation systems able to perform human action and activity recognition. In addition, the book covers the technology behind intelligent wheelchairs, how computer vision technologies have the potential to assist blind people, and about the computer vision-based solutions recently employed for safety and health monitoring. - Gives the state-of-the-art computer vision techniques and tools for assistive healthcare - Includes a broad range of topic areas, ranging from image processing, pattern recognition, machine learning to robotics, natural language processing and computer graphics - Presents a wide range of application areas, ranging from mobility, sensory substitution, and safety and security, to mental and physical rehabilitation and training - Written by leading researchers in this growing field of research - Describes the outstanding research challenges that still need to be tackled, giving researchers good indicators of research opportunities
Studies on robotics applications have grown substantially in recent years, with swarm robotics being a relatively new area of research. Inspired by studies in swarm intelligence and robotics, swarm robotics facilitates interactions between robots as well as their interactions with the environment. The Handbook of Research on Design, Control, and Modeling of Swarm Robotics is a collection of the most important research achievements in swarm robotics thus far, covering the growing areas of design, control, and modeling of swarm robotics. This handbook serves as an essential resource for researchers, engineers, graduates, and senior undergraduates with interests in swarm robotics and its applications.