Download Free Modeling Simulation And Experiment Of Human Like Walking For Bipedal Robot Book in PDF and EPUB Free Download. You can read online Modeling Simulation And Experiment Of Human Like Walking For Bipedal Robot and write the review.

The model-based investigation of motions of anthropomorphic systems is an important interdisciplinary research topic involving specialists from many fields such as Robotics, Biomechanics, Physiology, Orthopedics, Psychology, Neurosciences, Sports, Computer Graphics and Applied Mathematics. This book presents a study of basic locomotion forms such as walking and running is of particular interest due to the high demand on dynamic coordination, actuator efficiency and balance control. Mathematical models and numerical simulation and optimization techniques are explained, in combination with experimental data, which can help to better understand the basic underlying mechanisms of these motions and to improve them. Example topics treated in this book are Modeling techniques for anthropomorphic bipedal walking systems Optimized walking motions for different objective functions Identification of objective functions from measurements Simulation and optimization approaches for humanoid robots Biologically inspired control algorithms for bipedal walking Generation and deformation of natural walking in computer graphics Imitation of human motions on humanoids Emotional body language during walking Simulation of biologically inspired actuators for bipedal walking machines Modeling and simulation techniques for the development of prostheses Functional electrical stimulation of walking.
This book presents various techniques to carry out the gait modeling, the gait patterns synthesis, and the control of biped robots. Some general information on the human walking, a presentation of the current experimental biped robots, and the application of walking bipeds are given. The modeling is based on the decomposition on a walking step into different sub-phases depending on the way each foot stands into contact on the ground. The robot design is dealt with according to the mass repartition and the choice of the actuators. Different ways to generate walking patterns are considered, such as passive walking and gait synthesis performed using optimization technique. Control based on the robot modeling, neural network methods, or intuitive approaches are presented. The unilaterality of contact is dealt with using on-line adaptation of the desired motion.
By the dawn of the new millennium, robotics has undergone a major tra- formation in scope and dimensions. This expansion has been brought about bythematurityofthe?eldandtheadvancesinitsrelatedtechnologies.From a largely dominant industrial focus, robotics has been rapidly expanding into the challenges of the human world. The new generation of robots is expected to safely and dependably co-habitat with humans in homes, workplaces, and communities,providingsupportinservices,entertainment,education,heal- care, manufacturing, and assistance. Beyond its impact on physical robots, the body of knowledge robotics has produced is revealing a much wider range of applications reaching across - verse researchareas and scienti?c disciplines, such as: biomechanics, haptics, neurosciences, virtual simulation, animation, surgery, and sensor networks among others. In return, the challenges of the new emerging areas are pr- ing an abundant source of stimulation and insights for the ?eld of robotics. It is indeed at the intersection of disciplines that the most striking advances happen. The goal of the series of Springer Tracts in Advanced Robotics (STAR) is to bring, in a timely fashion, the latest advances and developments in robotics on the basis of their signi?cance and quality. It is our hope that the wider dissemination of research developments will stimulate more exchanges and collaborations among the research community and contribute to further advancement of this rapidly growing ?eld.
A humanoid robot is a robot with its body shape built to resemble the human body. The design may be for functional purposes, such as interacting with human tools and environments, for experimental purposes, such as the study of al locomotion or for other purposes. In general, humanoid robots have a torso, a head, two arms, and two legs, though some forms of humanoid robots may model only part of the body, for example, from the waist up. Some humanoid robot also have heads designed to replicate human facial features such as eyes and mouths. Androids are humanoid robots built to aesthetically resemble humans. It is easier for bipedal robots to exist in a human oriented environment than for other types of robots. Furthermore, dynamic walking is more efficient than static walking. For a biped robot achieve dynamic balance while walking, a dynamic gait must be developed. Two different approaches to gait generation are presented
This book presents a unique examination of mobile robots and embedded systems, from introductory to intermediate level. It is structured in three parts, dealing with Embedded Systems (hardware and software design, actuators, sensors, PID control, multitasking), Mobile Robot Design (driving, balancing, walking, and flying robots), and Mobile Robot Applications (mapping, robot soccer, genetic algorithms, neural networks, behavior-based systems, and simulation). The book is written as a text for courses in computer science, computer engineering, IT, electronic engineering, and mechatronics, as well as a guide for robot hobbyists and researchers.
Human Modelling for Bio-inspired Robotics: Mechanical Engineering in Assistive Technologies presents the most cutting-edge research outcomes in the area of mechanical and control aspects of human functions for macro-scale (human size) applications. Intended to provide researchers both in academia and industry with key content on which to base their developments, this book is organized and written by senior experts in their fields. Human Modeling for Bio-Inspired Robotics: Mechanical Engineering in Assistive Technologies offers a system-level investigation into human mechanisms that inspire the development of assistive technologies and humanoid robotics, including topics in modelling of anatomical, musculoskeletal, neural and cognitive systems, as well as motor skills, adaptation and integration. Each chapter is written by a subject expert and discusses its background, research challenges, key outcomes, application, and future trends. This book will be especially useful for academic and industry researchers in this exciting field, as well as graduate-level students to bring them up to speed with the latest technology in mechanical design and control aspects of the area. Previous knowledge of the fundamentals of kinematics, dynamics, control, and signal processing is assumed. Presents the most recent research outcomes in the area of mechanical and control aspects of human functions for macro-scale (human size) applications Covers background information and fundamental concepts of human modelling Includes modelling of anatomical, musculoskeletal, neural and cognitive systems, as well as motor skills, adaptation, integration, and safety issues Assumes previous knowledge of the fundamentals of kinematics, dynamics, control, and signal processing
Abstract: This research focuses on the application of existing design, modeling, and control techniques to study uninvestigated problems in the area of bipedal walking robots. The first portion of this thesis presents a method of integrating mechanism design and hybrid system analysis for the design of a class of single-degree-of-freedom (DOF) planar bipedal robots that can achieve dynamic walking gaits that are stable. These bipeds employ mechanical coordination to reduce the DOF, which can result in a reduction of the complexity of the control strategies needed to enable stable walking. Prior to this work, a methodology for the design of this type of biped had yet to be developed. The second portion of this thesis investigates walking in three-dimensions (3D). A five-DOF, 3D bipedal model is derived and is used to study the degree of dynamic coupling between frontal and sagittal plane motions. Since the dynamics are found to he inherently coupled, a feedback control algorithm that simultaneously accounts for sagittal and frontal plane motions is introduced. With this control, only unstable periodic gaits are obtained. The final portion of this thesis also involves walking in 3D but focuses on the use of a passive-dynamic walker as a basis for the development of 3D controlled bipedal models. The basin of attraction of a known, stable gait for a passive 3D biped is estimated. The stability mechanisms of the limit cycle are also analyzed. Finally, a passivity-based control strategy is introduced that results in a moderate increase in the size of the basin of attraction. Prior to this work, this methodology had yet to be applied to a 3D passive biped.
This book reports on the developments of the bipedal walking robot Lucy. Special about it is that the biped is not actuated with the classical electrical drives but with pleated pneumatic artificial muscles. In an antagonistic setup of such muscles both the torque and the compliance are controllable. From human walking there is evidence that joint compliance plays an important role in energy efficient walking and running. Moreover pneumatic artificial muscles have a high power to weight ratio and can be coupled directly without complex gearing mechanism, which can be beneficial towards legged mechanisms. Additionally, they have the capability of absorbing impact shocks and store and release motion energy. This book gives a complete description of Lucy: the hardware, the electronics and the software. A hybrid simulation program, combining the robot dynamics and muscle/valve thermodynamics, has been written to evaluate control strategies before implementing them in the real biped.