Download Free Modeling Root Water Uptake Book in PDF and EPUB Free Download. You can read online Modeling Root Water Uptake and write the review.

Root water uptake by plants mediates the exchange of water, carbon and energy between land surface and atmosphere and is important in hydrological, climatological, agricultural and ecological studies. Field measurements show that root water uptake could be significantly affected by root water compensation and hydraulic redistribution. We thus use a root water uptake model able to describe these two mechanisms and show their importance when vegetation is growing in shallow water-table environments or duplex soils. The model is based on the Richards equation for the water-flow in soils, with a term for root water uptake being a function of the water potential difference between root xylem and the soil. We describe the flow in the xylem using the Darcy's equation.The model is used in three studies aimed at highlighting the role that root water compensation and hydraulic redistribution might have on the overall root water uptake. In the first study, the model in one dimension is applied to a site near Sydney, Australia, to investigate how native trees growing on duplex soils are able to sustain transpiration rate despite long periods with little or no rain. The model was able to reproduce sap-flux data and the pattern of soil, root and leaf water potential for several months. Scenarios with different root depths showed that trees were able to adjust their water-uptake rates from different soil layers based on soil moisture availability; thus, root water compensation appears to be a key mechanism to maintain sustained transpiration rates. In a second study we investigated the contribution of root water compensation and hydraulic redistribution to root water uptake in shallow water-table environments. We compared the results of our model with a more commonly used root water uptake model. In the third study, we extended the 1D-model to two dimensions, thereby being able to simulate horizontal hydraulic redistribution and the interaction between species with different root systems. In the 2D-model, the roots were assumed to be a continuum in soil and the root systems were described in terms of xylem conductivity fields. Scenarios are presented to show that the 2D-model is able to reproduce observed flow patterns through roots in parts of the soil with different degrees of moisture. The studies presented in this thesis show the further development and use of a modeling approach that is gaining increasing interest in the recent literature. These studies present a realistic description of the role that root water compensation and hydraulic redistribution play in plant water use. The 2D-model introduces a representation of the root system that allows for modelling vertical (hydraulic lift) and horizontal hydraulic redistribution of water in soil, and an efficient description of the interaction between species with different root systems.
Theory of field water use: basics of water flow i unsaturated soils;water uptake by plants roots;numerical approximation of flow in soil-root systems. Theory of crop production:mathematical description of growts;water and actual production;calculation of potential production. Theprogram:program for field water use, SWATR;program for crop production,CROPR;execution of SWATR; execution of CROPR.
General introduction; Empirical models for crop-weed competition; Eco-physiological models for crop-weed competition; Mechanisms of competition for light; Mechanisms of competition for water; Mechanisms of competition for nitrogen; Eco-physiological characterization of the species; Understanding crop-weed interaction in field situation; The impact of environmental and genetic factors; Practical applications.
The root is the organ that functions as the interface between the plant and the earth environment. Many human management practices involving crops, forests and natural vegetation also affect plant growth through the soil and roots. Understanding the morphology and function of roots from the cellular level to the level of the whole root system is required for both plant production and environmental protection. This book is at the forefront of plant root science (rhizology), catering to professional plant scientists and graduate students. It covers root development, stress physiology, ecology, and associations with microorganisms. The chapters are selected papers originally presented at the 6th Symposium of the International Society of Root Research, where plant biologists, ecologists, soil microbiologists, crop scientists, forestry scientists, and environmental scientists, among others, gathered to discuss current research results and to establish rhizology as a newly integrated research area.
Provides an essential introduction to modeling terrestrial ecosystems in Earth system models for graduate students and researchers.
Mankind has manipulated the quantity and quality of soil water for millennia. Food production was massively increased through fertilization, irrigation and drainage. But malpractice also caused degradation of immense areas of once fertile land, rendering it totally unproductive for many generations. In populated areas, the pollutant load ever more often exceeds the soil’s capacity for buffering and retention, and large volumes of potable groundwater have been polluted or are threatened to be polluted in the foreseeable future. In the past decades, the role of soil water in climate patterns has been recognized but not yet fully understood. The soil-science community responded to this diversity of issues by developing numerical models to simulate the behavior of water and solutes in soils. These models helped improve our understanding of unsaturated-zone processes and develop sustainable land-management practices. Aimed at professional soil scientists, soil-water modelers, irrigation engineers etc., this book discusses our progress in soil-water modeling. Top scientists present case studies, overviews and analyses of strengths, weaknesses, opportunities and threats related to soil-water modeling. The contributions cover a wide range of spatial scales, and discuss fundamental aspects of unsaturated-zone modeling as well as issues related to the application of models to real-world problems.
This publication comes with computer software and presents a comprehensive simulation model designed to predict the hydrologic response, including potential for surface and groundwater contamination, of alternative crop-management systems. It simulates crop development and the movement of water, nutrients and pesticides over and through the root zone for a representative unit area of an agricultural field over multiple years. The model allows simulation of a wide spectrum of management practices and scenarios with special features such as the rapid transport of surface-applied chemicals through macropores to deeper depths and the preferential transport of chemicals within the soil matrix via mobile-immobile zones. The transfer of surface-applied chemicals (pesticides in particular) to runoff water is also an important component.
Explore an in-depth and insightful collection of resources discussing various aspects of root structure and function in intensive agricultural systems The Root Systems in Sustainable Agricultural Intensification delivers a comprehensive treatment of state-of-the-art concepts in the theoretical and practical aspects of agricultural management to enhance root system architecture and function. The book emphasizes the agricultural measures that enhance root capacity to develop and function under a range of water and nutrient regimes to maximize food, feed, and fibre production, as well as minimize undesirable water and nutrient losses to the environment. This reference includes resources that discuss a variety of soil, plant, agronomy, farming system, breeding, molecular and modelling aspects to the subject. It also discusses strategies and mechanisms that underpin increased water- and nutrient-use efficiency and combines consideration of natural and agricultural systems to show the continuity of traits and mechanisms. Finally, the book explores issues related to the global economy as well as widespread social issues that arise from, or are underpinned by, agricultural intensification. Readers will also benefit from the inclusion of: A thorough introduction to sustainable intensification, including its meaning, the need for the technology, components, and the role of root systems Exploration of the dynamics of root systems in crop and pasture genotypes over the last 100 years Discussion of the interplay between root structure and function with soil microbiome in enhancing efficiency of nitrogen and phosphorus acquisition Evaluation of water uptake in drying soil, including balancing supply and demand Perfect for agronomists, horticulturalists, plant and soil scientists, breeders, and soil microbiologists, The Root Systems in Sustainable Agricultural Intensification will also earn a place in the libraries of advanced undergraduate and postgraduate students in this field who seek a one-stop reference in the area of root structure and function.