Download Free Modeling Of Multicomponent Multistage Separation Processes Book in PDF and EPUB Free Download. You can read online Modeling Of Multicomponent Multistage Separation Processes and write the review.

The development of computer-aided simulation programs for separation processes provides engineers with valuable tools to make more reliable qualitative and quantitative decisions in plant design and operation. Written by a specialist in modeling and optimization, Multistage Separation Processes, Third Edition clarifies the effective use of simulato
Multistage separation processes are essentially the heart and soul of the petroleum, petrochemical, and chemical industries. They yield products as common as gasoline and plastics and those as specialized as medical-grade pharmaceuticals. Predicting the Performance of Multistage Separation Processes provides chemical engineers with solid information and insights into these processes. It reaches beyond fundamental principles to focus on intuitive understanding and practical interpretation. To that end, it presents numerous examples from a variety of applications, effectively demonstrating the performance of processes under varying conditions and the relationship among the different operating variables. With major advances in computational techniques for solving complex multistage separation equations, a variety of simulation programs have emerged that allow accurate and efficient prediction of multistage separation processes. These are valuable and effective tools, but are often hampered by a lack of understanding of the fundamentals and limitations of prediction techniques. The author addresses these problems and pursues a strategy that decouples the discussion of conceptual analysis and the computational techniques. Although Dr. Khoury presents mathematical methods in detail, he gives special attention to keeping the practical interpretation of the models in focus and emphasizes intuitive understanding. He applies graphical techniques and shortcut methods wherever possible and includes industrial practice heuristics about the ranges of operating variables that will work. With its updates and the addition of more than 100 new applications problems and solutions, Predicting the Performance of Multistage Separation Processes, Second Edition is ideal for a methodical study of separation processes and as a reference for the fundamental principles and shortcuts useful to the working professional.
The latest edition of a perennial bestseller, Multistage Separation Processes, Fourth Edition provides a clear and thorough presentation of the theoretical foundation, and understanding of the development, evaluation, design, and optimization steps of these processes, from both an academic and industrial perspective. The book’s emphasis on starting with theoretical models and their role in computer simulation, followed by practical applications, sets it apart from other texts on this topic. The author also highlights the importance of relating fundamental concepts to intuitive understanding of the processes. See What’s New in the Fourth Edition: Chapter on fluid-solid operations Expanded development of theories and methods for many applications Adds numerous industry-related examples and end-of-chapter problems Case studies combined with examples Updated and enhanced figures The book includes a generous number of examples from a wide variety of applications to relate theory to actual results, and to demonstrate the performance of process under varying conditions. The chapter topics follow a logical path that starts with basics and theoretical concepts, and progresses systematically into the various separation processes. Each chapter provides the information relevant to a specific topic, and refers to appropriate chapters in the book as needed. These features combine to give you the understanding required to make the best selections of property prediction and simulation techniques and avoid the cost incurred by the use of improper simulations.
Originally published: New York: McGraw-Hill, 1971. 2nd ed. Includes a new introduction.
Addresses the use of rigorous multicomponent mass transfer models for the simulation and design of process equipment. Deals with the basic equations of diffusion in multicomponent systems. Describes various models and estimations of rates of mass and energy transfer. Covers applications of multicomponent mass transfer models to process design. Includes appendices providing necessary mathematical background. Contains a large number of numerical examples worked out in detail.