Download Free Modeling Of Metal Forming And Machining Processes Book in PDF and EPUB Free Download. You can read online Modeling Of Metal Forming And Machining Processes and write the review.

Written by authorities in the subject, this book provides a complete treatment of metal forming and machining by using the computational techniques FEM, fuzzy set theory and neural networks as modelling tools. The algorithms and solved examples included make this book of value to postgraduates, senior undergraduates, and lecturers and researchers in these fields. Research and development engineers and consultants for the manufacturing industry will also find it of use.
Advanced Modeling and Optimization of Manufacturing Processes presents a comprehensive review of the latest international research and development trends in the modeling and optimization of manufacturing processes, with a focus on machining. It uses examples of various manufacturing processes to demonstrate advanced modeling and optimization techniques. Both basic and advanced concepts are presented for various manufacturing processes, mathematical models, traditional and non-traditional optimization techniques, and real case studies. The results of the application of the proposed methods are also covered and the book highlights the most useful modeling and optimization strategies for achieving best process performance. In addition to covering the advanced modeling, optimization and environmental aspects of machining processes, Advanced Modeling and Optimization of Manufacturing Processes also covers the latest technological advances, including rapid prototyping and tooling, micromachining, and nano-finishing. Advanced Modeling and Optimization of Manufacturing Processes is written for designers and manufacturing engineers who are responsible for the technical aspects of product realization, as it presents new models and optimization techniques to make their work easier, more efficient, and more effective. It is also a useful text for practitioners, researchers, and advanced students in mechanical, industrial, and manufacturing engineering.
Manufacturing, reduced to its simplest form, involves the sequencing of product forms through a number of different processes. Each individual step, known as an unit manufacturing process, can be viewed as the fundamental building block of a nation's manufacturing capability. A committee of the National Research Council has prepared a report to help define national priorities for research in unit processes. It contains an organizing framework for unit process families, criteria for determining the criticality of a process or manufacturing technology, examples of research opportunities, and a prioritized list of enabling technologies that can lead to the manufacture of products of superior quality at competitive costs. The study was performed under the sponsorship of the National Science Foundation and the Defense Department's Manufacturing Technology Program.
Provides an in-depth understanding of the fundamentals of a wide range of state-of-the-art materials manufacturing processes Modern manufacturing is at the core of industrial production from base materials to semi-finished goods and final products. Over the last decade, a variety of innovative methods have been developed that allow for manufacturing processes that are more versatile, less energy-consuming, and more environmentally friendly. This book provides readers with everything they need to know about the many manufacturing processes of today. Presented in three parts, Modern Manufacturing Processes starts by covering advanced manufacturing forming processes such as sheet forming, powder forming, and injection molding. The second part deals with thermal and energy-assisted manufacturing processes, including warm and hot hydrostamping. It also covers high speed forming (electromagnetic, electrohydraulic, and explosive forming). The third part reviews advanced material removal process like advanced grinding, electro-discharge machining, micro milling, and laser machining. It also looks at high speed and hard machining and examines advances in material modeling for manufacturing analysis and simulation. Offers a comprehensive overview of advanced materials manufacturing processes Provides practice-oriented information to help readers find the right manufacturing methods for the intended applications Highly relevant for material scientists and engineers in industry Modern Manufacturing Processes is an ideal book for practitioners and researchers in materials and mechanical engineering.
Applied Metal Forming: Including FEM Analysis describes metal forming theory and how experimental techniques can be used to study any metal forming operation with great accuracy. For each primary class of processes, such as forging, rolling, extrusion, wiredrawing, and sheet-metal forming, it explains how FEA (Finite Element Analysis) can be applied with great precision to characterize the forming condition and in this way optimize the processes. FEA has made it possible to build very realistic FEM-models of any metal forming process, including complex three-dimensional forming operations, in which complex products are shaped by complex dies. Thus, using FEA it is now possible to visualize any metal forming process and to study strain, stresses, and other forming conditions inside the parts being manufactured as they develop throughout the process.
It is always hard to set manufacturing systems to produce large quantities of standardized parts. Controlling these mass production lines needs deep knowledge, hard experience, and the required related tools as well. The use of modern methods and techniques to produce a large quantity of products within productive manufacturing processes provides improvements in manufacturing costs and product quality. In order to serve these purposes, this book aims to reflect on the advanced manufacturing systems of different alloys in production with related components and automation technologies. Additionally, it focuses on mass production processes designed according to Industry 4.0 considering different kinds of quality and improvement works in mass production systems for high productive and sustainable manufacturing. This book may be interesting to researchers, industrial employees, or any other partners who work for better quality manufacturing at any stage of the mass production processes.
This book focuses on numerical simulations of manufacturing processes, discussing the use of numerical simulation techniques for design and analysis of the components and the manufacturing systems. Experimental studies on manufacturing processes are costly, time consuming and limited to the facilities available. Numerical simulations can help study the process at a faster rate and for a wide range of process conditions. They also provide good prediction accuracy and deeper insights into the process. The simulation models do not require any pre-simulation, experimental or analytical results, making them highly suitable and widely used for the reliable prediction of process outcomes. The book is based on selected proceedings of AIMTDR 2016. The chapters discuss topics relating to various simulation techniques, such as computational fluid dynamics, heat flow, thermo-mechanical analysis, molecular dynamics, multibody dynamic analysis, and operational modal analysis. These simulation techniques are used to: 1) design the components, 2) to investigate the effect of critical process parameters on the process outcome, 3) to explore the physics of the process, 4) to analyse the feasibility of the process or design, and 5) to optimize the process. A wide range of advanced manufacturing processes are covered, including friction stir welding, electro-discharge machining, electro-chemical machining, magnetic pulse welding, milling with MQL (minimum quantity lubrication), electromagnetic cladding, abrasive flow machining, incremental sheet forming, ultrasonic assisted turning, TIG welding, and laser sintering. This book will be useful to researchers and professional engineers alike.
Metal machining is the most widespread metal-shaping process in the mechanical manufacturing industry. World-wide investment in metal machining tools increases year on year - and the wealth of nations can be judged by it. This text - the most up-to-date in the field - provides in-depth discussion of the theory and application of metal machining at an advanced level. It begins with an overview of the development of metal machining and its role in the current industrial environment and continues with a discussion of the theory and practice of machining. The underlying mechanics are analysed in detail and there are extensive chapters examining applications through a discussion of simulation and process control. "Metal Machining: Theory and Applications" is essential reading for senior undergraduates and postgraduates specialising in cutting technology. It is also an invaluable reference tool for professional engineers. Professors Childs, Maekawa, Obikawa and Yamane are four of the leading authorities on metal machining and have worked together for many years.Of interest to all mechanical, manufacturing and materials engineersTheoretical and practical problems addressed
This book provides the knowledge and insight into the fundamental aspects of Electric Discharge Machining (EDM) processes and various hybrid machining technologies derived to improve the machining efficiencies. Fundamental theory of material removal, recent research trends and future research directions have been covered in each chapter. After explaining EDM, Dry and Near-dry EDM processes, Electrochemical Spark Machining, Arc Machining processes, Electric Discharge Hybrid-Turning processes, Electrical Discharge Grinding, Electric Discharge Milling, and various assisted EDM processes have been discussed. Finally, modeling and simulation of hybrid machining processes are also included. The book reflects the recent developments and trends in electric discharge hybrid machining processes. It covers in detail the basics of EDM, various hybrid and assistive technologies in EDM. It includes the updated discussion on the significance of process parameters in various hybrid EDM processes. An overview of modelling and simulation of hybrid EDM process is provided. This book is aimed at Graduate students, researchers in manufacturing engineering, production engineering, and materials engineering.
Artificial intelligence (AI) techniques and the finite element method (FEM) are both powerful computing tools, which are extensively used for modeling and optimizing manufacturing processes. The combination of these tools has resulted in a new flexible and robust approach as several recent studies have shown. This book aims to review the work already done in this field as well as to expose the new possibilities and foreseen trends. The book is expected to be useful for postgraduate students and researchers, working in the area of modeling and optimization of manufacturing processes.