Download Free Modeling Methods In Understanding And Ameliorating Central Nervous System Injury Book in PDF and EPUB Free Download. You can read online Modeling Methods In Understanding And Ameliorating Central Nervous System Injury and write the review.

To improve the quality of life for victims of traumatic spinal cord and brain injury, a better understanding of how microstructural mechanical behavior influences bulk tissue and vice versa is necessary. Two aspects that warrant attention in this matter are primary injury and neural electrode-tissue interactions. While their respective biomechanics are measurable at the macroscopic level, it is difficult to measure microscopic deformations during injury in situ and in vivo experimentally. To overcome this limitation, we develop experimentally validated computational approaches to predict the multiscale translations involved in white matter tissue injury, and probe-tissue interfaces. In the first part of this dissertation, we developed approaches to model primary injury at the axon level. First we developed 3-D axon kinematic models to infer axonal strain as a function of tissue-level stretch. Embryonic chick spinal cord tissue was exposed to controlled stretch and axon tortuosity and kinematics were characterized in 3-dimensions. We determined that greater proportions of axons are predicted to behave with affine, composite-like kinematics. Next, we identified and evaluated contactin-associated protein (Caspr) for use as a fiducial marker in estimating axonal strain and axonal failure thresholds. Spinal cord tissue was exposed to controlled stretch, and displacements of immunostained Caspr proteins were measured. Changes in Caspr displacements reflected the applied macroscopic stretch directly at earlier stages of development but this trend deviated with further development. This shift in trend correlated with observations of axon failure at later stages of development, and we predicted axon failure thresholds to decrease with development. In the second part of this dissertation, we developed approaches to model multiscale mechanics in neural probe and tissue interactions. Finite element simulations were developed and experimentally validated to determine insertion and buckling forces for different coating and probe designs. Parameter sweeps of these features determined that probe length and coating thickness had the biggest impact on insertion forces. Next, we used the model to simulate the probe-tissue interface in order to correlate interfacial stress and tissue strain to chronic injury. Stress and strain predictions were made for a variety of probe designs and results were validated with parallel experiments using agarose tissue phantoms. We correlated predictions to gliosis through an in vitro model where astrocytes cultured in collagen gels were cast around a probe and exposed to micromotion. We determined that probe stiffness has a greater effect on chronic injury than size. We were also able to predict minimum strain thresholds for inducing astrocyte activation. The findings in this work help elucidate multiscale transfers in white matter injury and probe-tissue interfaces. These results can be applied to the design of better preventative measures for brain and spinal cord injury (sports and military equipment), as well as neural probes for long-term signal acquisition/stimulation in brain-to-computer interfaces.
This volume discusses experimental brain injury models that contain valuable information carefully chosen to widen the researchers’ horizon about neurotrauma. Injury Models of Central Nervous System: Methods and Protocols contains relevant experimental design approaches that have been adapted and made ready for application in laboratory settings. For easier navigation, the chapters are categorized into 6 parts: Introduction, General Consideration in Using Animal Laboratory in CNS Injury Research, Classical TBI Models and Their Link with Pathophysiological Features of CBS Injury – Models, Special Topics in CNS Trauma: Comorbid Conditions in CNS Injury, Outcome Measures in Brain Injury Models, and Future Directions. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Practical and thorough, Injury Models of Central Nervous Systems: Methods and Protocols, is a very useful reference towards the progress of this discipline.
Traumatic brain injury (TBI) remains a significant source of death and permanent disability, contributing to nearly one-third of all injury related deaths in the United States and exacting a profound personal and economic toll. Despite the increased resources that have recently been brought to bear to improve our understanding of TBI, the developme
This book is a collection of classical as well as innovative methods used to investigate axon degeneration with a particular focus on addressing the common challenges encountered while performing these procedures. Particular attention is devoted to the study of axon loss in several model organisms, as each poses unique challenges and provides powerful advantages. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Axon Degeneration: Methods and Protocols is an ideal guide for facilitating the application and further development of these protocols, which will help the scientific community tackle important questions regarding axon degeneration. Chapters 2, 3, and 20 are available Open Access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Central nervous system trauma, which encompasses stroke, subarachnoid hemorrhage, head injury, and spinal cord injury, is a leading cause of death in developed countries. In the search for underlying mechanisms, membrane involvement has been the common link. This fourth volume in the Membrane-Linked Diseases series is therefore dedicated to research on CNS trauma. Focusing on the mechanism of membrane damage, Central Nervous System Trauma: Research Techniques presents a variety of experimental techniques to study the mechanism of CNS trauma. Animal and tissue culture models provide the bulk of the research findings in this area. Possible pharmacological interventions are analyzed. This volume offers numerous illustrative examples, including full color figures. This book serves as a valuable resource for students and researchers, assisting in the comprehension of current trends in CNS trauma and helping to stimulate the discovery of new research areas.
With the contribution from more than one hundred CNS neurotrauma experts, this book provides a comprehensive and up-to-date account on the latest developments in the area of neurotrauma including biomarker studies, experimental models, diagnostic methods, and neurotherapeutic intervention strategies in brain injury research. It discusses neurotrauma mechanisms, biomarker discovery, and neurocognitive and neurobehavioral deficits. Also included are medical interventions and recent neurotherapeutics used in the area of brain injury that have been translated to the area of rehabilitation research. In addition, a section is devoted to models of milder CNS injury, including sports injuries.
The brain is the most complex organ in our body. Indeed, it is perhaps the most complex structure we have ever encountered in nature. Both structurally and functionally, there are many peculiarities that differentiate the brain from all other organs. The brain is our connection to the world around us and by governing nervous system and higher function, any disturbance induces severe neurological and psychiatric disorders that can have a devastating effect on quality of life. Our understanding of the physiology and biochemistry of the brain has improved dramatically in the last two decades. In particular, the critical role of cations, including magnesium, has become evident, even if incompletely understood at a mechanistic level. The exact role and regulation of magnesium, in particular, remains elusive, largely because intracellular levels are so difficult to routinely quantify. Nonetheless, the importance of magnesium to normal central nervous system activity is self-evident given the complicated homeostatic mechanisms that maintain the concentration of this cation within strict limits essential for normal physiology and metabolism. There is also considerable accumulating evidence to suggest alterations to some brain functions in both normal and pathological conditions may be linked to alterations in local magnesium concentration. This book, containing chapters written by some of the foremost experts in the field of magnesium research, brings together the latest in experimental and clinical magnesium research as it relates to the central nervous system. It offers a complete and updated view of magnesiums involvement in central nervous system function and in so doing, brings together two main pillars of contemporary neuroscience research, namely providing an explanation for the molecular mechanisms involved in brain function, and emphasizing the connections between the molecular changes and behavior. It is the untiring efforts of those magnesium researchers who have dedicated their lives to unraveling the mysteries of magnesiums role in biological systems that has inspired the collation of this volume of work.