Download Free Modeling Mems And Nems Book in PDF and EPUB Free Download. You can read online Modeling Mems And Nems and write the review.

Designing small structures necessitates an a priori understanding of various device behaviors. The way to gain such understanding is to construct, analyze, and interpret the proper mathematical model. Through such models, Modeling MEMS and NEMS illuminates microscale and nanoscale phenomena, thereby facilitating the design and optimization o
The development of micro- and nano-mechanical systems (MEMS and NEMS) foreshadows momentous changes not only in the technological world, but in virtually every aspect of human life. The future of the field is bright with opportunities, but also riddled with challenges, ranging from further theoretical development through advances in fabrication technologies, to developing high-performance nano- and microscale systems, devices, and structures, including transducers, switches, logic gates, actuators and sensors. MEMS and NEMS: Systems, Devices, and Structures is designed to help you meet those challenges and solve fundamental, experimental, and applied problems. Written from a multi-disciplinary perspective, this book forms the basis for the synthesis, modeling, analysis, simulation, control, prototyping, and fabrication of MEMS and NEMS. The author brings together the various paradigms, methods, and technologies associated with MEMS and NEMS to show how to synthesize, analyze, design, and fabricate them. Focusing on the basics, he illustrates the development of NEMS and MEMS architectures, physical representations, structural synthesis, and optimization. The applications of MEMS and NEMS in areas such as biotechnology, medicine, avionics, transportation, and defense are virtually limitless. This book helps prepare you to take advantage of their inherent opportunities and effectively solve problems related to their configurations, systems integration, and control.
This significant and uniquely comprehensive five-volume reference is a valuable source for research workers, practitioners, computer scientists, students, and technologists. It covers all of the major topics within the subject and offers a comprehensive treatment of MEMS design, fabrication techniques, and manufacturing methods. It also includes current medical applications of MEMS technology and provides applications of MEMS to opto-electronic devices. It is clearly written, self-contained, and accessible, with helpful standard features including an introduction, summary, extensive figures and design examples with comprehensive reference lists.
This book highlights numerical models as powerful tools for the optimal design of Micro-Electro-Mechanical Systems (MEMS). Most MEMS experts have a background in electronics, where circuit models or behavioral models (i.e. lumped-parameter models) of devices are preferred to field models. This is certainly convenient in terms of preliminary design, e.g. in the prototyping stage. However, design optimization should also take into account fine-sizing effects on device behavior and therefore be based on distributed-parameter models, such as finite-element models. The book shows how the combination of automated optimal design and field-based models can produce powerful design toolboxes for MEMS. It especially focuses on illustrating theoretical concepts with practical examples, fostering comprehension through a problem-solving approach. By comparing the results obtained using different methods, readers will learn to identify their respective strengths and weaknesses. In addition, special emphasis is given to evolutionary computing and nature-inspired optimization strategies, the effectiveness of which has already been amply demonstrated. Given its scope, the book provides PhD students, researchers and professionals in the area of computer-aided analysis with a comprehensive, yet concise and practice-oriented guide to MEMS design and optimization. To benefit most from the book, readers should have a basic grasp of electromagnetism, vector analysis and numerical methods.
This volume takes a much needed multiphysical approach to the numerical and experimental evaluation of the mechanical properties of MEMS and NEMS. The contributed chapters present many of the most recent developments in fields ranging from microfluids and damping to structural analysis, topology optimization and nanoscale simulations. The book responds to a growing need emerging in academia and industry to merge different areas of expertise towards a unified design and analysis of MEMS and NEMS.
Presenting unified coverage of the design and modeling of smart micro- and macrosystems, this book addresses fabrication issues and outlines the challenges faced by engineers working with smart sensors in a variety of applications. Part I deals with the fundamental concepts of a typical smart system and its constituent components. Preliminary fabrication and characterization concepts are introduced before design principles are discussed in detail. Part III presents a comprehensive account of the modeling of smart systems, smart sensors and actuators. Part IV builds upon the fundamental concepts to analyze fabrication techniques for silicon-based MEMS in more detail. Practicing engineers will benefit from the detailed assessment of applications in communications technology, aerospace, biomedical and mechanical engineering. The book provides an essential reference or textbook for graduates following a course in smart sensors, actuators and systems.
Part of the AMN book series, this book covers the principles, modeling and implementation as well as applications of resonant MEMS from a unified viewpoint. It starts out with the fundamental equations and phenomena that govern the behavior of resonant MEMS and then gives a detailed overview of their implementation in capacitive, piezoelectric, thermal and organic devices, complemented by chapters addressing the packaging of the devices and their stability. The last part of the book is devoted to the cutting-edge applications of resonant MEMS such as inertial, chemical and biosensors, fluid properties sensors, timing devices and energy harvesting systems.
From MEMS to Bio-MEMS and Bio-NEMS: Manufacturing Techniques and Applications details manufacturing techniques applicable to bionanotechnology. After reviewing MEMS techniques, materials, and modeling, the author covers nanofabrication, genetically engineered proteins, artificial cells, nanochemistry, and self-assembly. He also discusses scaling laws in MEMS and NEMS, actuators, fluidics, and power and brains in miniature devices. He concludes with coverage of various MEMS and NEMS applications. Fully illustrated in color, the text contains end-of-chapter problems, worked examples, extensive references for further reading, and an extensive glossary of terms.
This groundbreaking book provides you with a comprehensive understanding of FBAR (thin-film bulk acoustic wave resonator), MEMS (microelectomechanical system), and NEMS (nanoelectromechanical system) resonators. For the first time anywhere, you find extensive coverage of these devices at both the technology and application levels. This practical reference offers you guidance in design, fabrication, and characterization of FBARs, MEMS and NEBS. It discusses the integration of these devices with standard CMOS (complementary-metal-oxide-semiconductor) technologies, and their application to sensing and RF systems. Moreover, this one-stop resource looks at the main characteristics, differences, and limitations of FBAR, MEMS, and NEMS devices, helping you to choose the right approaches for your projects. Over 280 illustrations and more than 130 equations support key topics throughout the book.
The fabrication of MEMS has been predominately achieved by etching the polysilicon material. However, new materials are in large demands that could overcome the hurdles in fabrication or manufacturing process. Although, an enormous amount of work being accomplished in the area, most of the information is treated as confidential or privileged. It is extremely hard to find the meaningful information for the new or related developments. This book is collection of chapters written by experts in MEMS and NEMS technology. Chapters are contributed on the development of new MEMS and NEMS materials as well as on the properties of these devices. Important properties such as residual stresses and buckling behavior in the devices are discussed as separate chapters. Various models have been included in the chapters that studies the mode and mechanism of failure of the MEMS and NEMS. This book is meant for the graduate students, research scholars and engineers who are involved in the research and developments of advanced MEMS and NEMS for a wide variety of applications. Critical information has been included for the readers that will help them in gaining precise control over dimensional stability, quality, reliability, productivity and maintenance in MEMS and NEMS. No such book is available in the market that addresses the developments and failures in these advanced devices.