Download Free Modeling Excitable Tissue Book in PDF and EPUB Free Download. You can read online Modeling Excitable Tissue and write the review.

This open access volume presents a novel computational framework for understanding how collections of excitable cells work. The key approach in the text is to model excitable tissue by representing the individual cells constituting the tissue. This is in stark contrast to the common approach where homogenization is used to develop models where the cells are not explicitly present. The approach allows for very detailed analysis of small collections of excitable cells, but computational challenges limit the applicability in the presence of large collections of cells.
This open access volume presents a novel computational framework for understanding how collections of excitable cells work. The key approach in the text is to model excitable tissue by representing the individual cells constituting the tissue. This is in stark contrast to the common approach where homogenization is used to develop models where the cells are not explicitly present. The approach allows for very detailed analysis of small collections of excitable cells, but computational challenges limit the applicability in the presence of large collections of cells.
What every neuroscientist should know about the mathematical modeling of excitable cells, presented at an introductory level.
What every neuroscientist should know about the mathematical modeling of excitable cells. Combining empirical physiology and nonlinear dynamics, this text provides an introduction to the simulation and modeling of dynamic phenomena in cell biology and neuroscience. It introduces mathematical modeling techniques alongside cellular electrophysiology. Topics include membrane transport and diffusion, the biophysics of excitable membranes, the gating of voltage and ligand-gated ion channels, intracellular calcium signalling, and electrical bursting in neurons and other excitable cell types. It introduces mathematical modeling techniques such as ordinary differential equations, phase plane, and bifurcation analysis of single-compartment neuron models. With analytical and computational problem sets, this book is suitable for life sciences majors, in biology to neuroscience, with one year of calculus, as well as graduate students looking for a primer on membrane excitability and calcium signalling.
This book presents a theoretical and practical overview of computational modeling in bioengineering, focusing on a range of applications including electrical stimulation of neural and cardiac tissue, implantable drug delivery, cancer therapy, biomechanics, cardiovascular dynamics, as well as fluid-structure interaction for modelling of organs, tissues, cells and devices. It covers the basic principles of modeling and simulation with ordinary and partial differential equations using MATLAB and COMSOL Multiphysics numerical software. The target audience primarily comprises postgraduate students and researchers, but the book may also be beneficial for practitioners in the medical device industry.
Calcium Entry Channels in Non-Excitable Cells focuses on methods of investigating the structure and function of non-voltage gated calcium channels. Each chapter presents important discoveries in calcium entry pathways, specifically dealing with the molecular identification of store-operated calcium channels which were reviewed by earlier volumes in the Methods in Signal Transduction series. Crystallographic and pharmacological approaches to the study of calcium channels of epithelial cells are also discussed. Calcium ion is a messenger in most cell types. Whereas voltage gated calcium channels have been studied extensively, the non-voltage gated calcium entry channel genes have only been identified relatively recently. The book will fill this important niche.
The fourth edition of this highly successful text has been extensively revised and restructured to take account of the many recent advances in the subject and bring it right up to date. The classic observations of recent years can now be interpreted with the powerful new techniques of molecular biology. Consequently there is much new material throughout the book, including many new illustrations and extensive references to recent work. Its essential philosophy remains the same, though: fundamental concepts are clearly explained, and key experiments are examined in some detail. This textbook will be used by students of physiology, neuroscience, cell biology and biophysics. Specializing undergraduates and graduates as well as lecturers and researchers will find the text thorough and clearly written.
Modeling Electrochemical Dynamics and Signaling Mechanisms in Excitable Cells with Pathological Case Studies covers the neuronal cell communication system in excitable cells, recognizing the most relevant mechanisms of cell communication. Along with new findings in biotechnology, medicine and pathological cases for clinicians, the book highlights electrochemical potential in living nerve and muscle cells. Written for physiological scientists, pharmaceutical scientists, medical doctors, biologists and physicists, this book an essential read for a real understanding of the signals as we see them. Covers neuronal cell communication systems in excitable cells Presents new findings in biotechnology that are being applied in medicine and pathological cases Covers mathematical and physical bases for readers without background in these fields
This new, fully revised and expanded edition of Ionic Channels of Excitable Membranes includes new chapters on fast chemical synapses, modulation through G protein coupled receptors and second messenger systems, molecules cloning, site directed mutagenesis, and cell biology. It begins with the classical biophysical work of Hodgkin and Huxley and then weaves a description of the known ionic channels together with their biological functions. The book continues by developing the physical and molecular principles needed for explaining permeation, gating, pharmacological modification, and molecular diversity, and ends with a discussion of channel evolution. Ionic Channels of Excitable Membranes is written to be accessible and interesting to biological and physical scientists of all kinds.