Download Free Modeling Estimation And Control Of Systems With Uncertainty Book in PDF and EPUB Free Download. You can read online Modeling Estimation And Control Of Systems With Uncertainty and write the review.

This volume contains the papers that have been presented at the Conference on Modeling and Control of Uncertain Systems held in Sopron, Hungary on September 3-7, 1990, organised within the framework of the activities of the System and Decision Sciences Program of IIASA - the International Institute for Applied Systems Analysis. The importance of the subject has drawn the attention of researchers all over the world since several years. In fact, in most actual applications the knowledge about the system under investigation presents aspects of uncertainty due to measurement errors or poor understanding of the rele vant underlying mechanisms. For this reason models that take into account these intrinsic uncertainties have been used and techniques for the analysis of their behavior as well as for their estimation and control have been devel oped. The main ways to deal with uncertainty consist in its description by stochastic processes or in terms of set-valued dynamics and this volume col lects relevant contributions in both directions. However, in order to avoid undesirable distinctions between these approaches, but on the contrary to stress the unity of ideas, we decided to organize the papers according to the alphabetical order of their authors. We should like to take this opportunity to thank IIASA for supporting the Conference and the Hungarian National Member Organization for the kind hospitality in Sopron. Finally we would like to express our gratitude to Ms. Donna Huchthausen for her valuable secretarial assistance. Vienna, February 20, 1991 GIOVANNI B.
To describe the true behavior of most real-world systems with sufficient accuracy, engineers have to overcome difficulties arising from their lack of knowledge about certain parts of a process or from the impossibility of characterizing it with absolute certainty. Depending on the application at hand, uncertainties in modeling and measurements can be represented in different ways. For example, bounded uncertainties can be described by intervals, affine forms or general polynomial enclosures such as Taylor models, whereas stochastic uncertainties can be characterized in the form of a distribution described, for example, by the mean value, the standard deviation and higher-order moments. The goal of this Special Volume on Modeling, Design, and Simulation of Systems with Uncertainties is to cover modern methods for dealing with the challenges presented by imprecise or unavailable information. All contributions tackle the topic from the point of view of control, state and parameter estimation, optimization and simulation. Thematically, this volume can be divided into two parts. In the first we present works highlighting the theoretic background and current research on algorithmic approaches in the field of uncertainty handling, together with their reliable software implementation. The second part is concerned with real-life application scenarios from various areas including but not limited to mechatronics, robotics, and biomedical engineering.
Stochastic Models: Estimation and Control: v. 2
A Modern Framework Based on Time-Tested MaterialA Functional Analysis Framework for Modeling, Estimation and Control in Science and Engineering presents functional analysis as a tool for understanding and treating distributed parameter systems. Drawing on his extensive research and teaching from the past 20 years, the author explains how functional
This Festschrift is intended as a homage to our esteemed colleague, friend and maestro Giorgio Picci on the occasion of his sixty-?fth birthday. We have knownGiorgiosince our undergraduatestudies at the University of Padova, wherewe?rst experiencedhisfascinatingteachingin theclass ofSystem Identi?cation. While progressing through the PhD program, then continuing to collaborate with him and eventually becoming colleagues, we have had many opportunitiesto appreciate the value of Giorgio as a professor and a scientist, and chie?y as a person. We learned a lot from him and we feel indebted for his scienti?c guidance, his constant support, encouragement and enthusiasm. For these reasons we are proud to dedicate this book to Giorgio. The articles in the volume will be presented by prominent researchers at the "--Ternational Conference on Modeling, Estimation and Control: A Symposium in Honor of Giorgio Picci on the Occasion of his Sixty-Fifth Birthday", to be held in Venice on October 4-5, 2007. The material covers a broad range of topics in mathematical systems theory, esti- tion, identi?cation and control, re?ecting the wide network of scienti?c relationships established during the last thirty years between the authors and Giorgio. Critical d- cussion of fundamental concepts, close collaboration on speci?c topics, joint research programs in this group of talented people have nourished the development of the?eld, where Giorgio has contributed to establishing several cornerstones.
Closes the gap between bioscience and mathematics-based process engineering This book presents the most commonly employed approaches in the control of bioprocesses. It discusses the role that control theory plays in understanding the mechanisms of cellular and metabolic processes, and presents key results in various fields such as dynamic modeling, dynamic properties of bioprocess models, software sensors designed for the online estimation of parameters and state variables, and control and supervision of bioprocesses Control in Bioengineering and Bioprocessing: Modeling, Estimation and the Use of Sensors is divided into three sections. Part I, Mathematical preliminaries and overview of the control and monitoring of bioprocess, provides a general overview of the control and monitoring of bioprocesses, and introduces the mathematical framework necessary for the analysis and characterization of bioprocess dynamics. Part II, Observability and control concepts, presents the observability concepts which form the basis of design online estimation algorithms (software sensor) for bioprocesses, and reviews controllability of these concepts, including automatic feedback control systems. Part III, Software sensors and observer-based control schemes for bioprocesses, features six application cases including dynamic behavior of 3-dimensional continuous bioreactors; observability analysis applied to 2D and 3D bioreactors with inhibitory and non-inhibitory models; and regulation of a continuously stirred bioreactor via modeling error compensation. Applicable across all areas of bioprocess engineering, including food and beverages, biofuels and renewable energy, pharmaceuticals and nutraceuticals, fermentation systems, product separation technologies, wastewater and solid-waste treatment technology, and bioremediation Provides a clear explanation of the mass-balance–based mathematical modelling of bioprocesses and the main tools for its dynamic analysis Offers industry-based applications on: myco-diesel for implementing "quality" of observability; developing a virtual sensor based on the Just-In-Time Model to monitor biological control systems; and virtual sensor design for state estimation in a photocatalytic bioreactor for hydrogen production Control in Bioengineering and Bioprocessing is intended as a foundational text for graduate level students in bioengineering, as well as a reference text for researchers, engineers, and other practitioners interested in the field of estimation and control of bioprocesses.
This book brings together for the first time the complete theory of data based neurofuzzy modelling and the linguistic attributes of fuzzy logic in a single cohesive mathematical framework. After introducing the basic theory of data based modelling new concepts including extended additive and multiplicative submodels are developed. All of these algorithms are illustrated with benchmark examples to demonstrate their efficiency. The book aims at researchers and advanced professionals in time series modelling, empirical data modelling, knowledge discovery, data mining and data fusion.
Indoor Navigation Strategies for Aerial Autonomous Systems presents the necessary and sufficient theoretical basis for those interested in working in unmanned aerial vehicles, providing three different approaches to mathematically represent the dynamics of an aerial vehicle. The book contains detailed information on fusion inertial measurements for orientation stabilization and its validation in flight tests, also proposing substantial theoretical and practical validation for improving the dropped or noised signals. In addition, the book contains different strategies to control and navigate aerial systems. The comprehensive information will be of interest to both researchers and practitioners working in automatic control, mechatronics, robotics, and UAVs, helping them improve research and motivating them to build a test-bed for future projects. - Provides substantial information on nonlinear control approaches and their validation in flight tests - Details in observer-delay schemes that can be applied in real-time - Teaches how an IMU is built and how they can improve the performance of their system when applying observers or predictors - Improves prototypes with tactics for proposed nonlinear schemes