Download Free Modeling Diagnostics And Prognostics Of A Two Spool Turbofan Engine Book in PDF and EPUB Free Download. You can read online Modeling Diagnostics And Prognostics Of A Two Spool Turbofan Engine and write the review.

Model-based diagnostic/prognostic techniques have the potential to predict, within reasonable bounds, the remaining useful life of critical system components. Due to the numerous uncertainties in the operation of a turbine engine and unavailability of accurate engine models, prognostics continue to pose a significant challenge. There is a need to develop an engine prognostic approach that can accommodate different damage modes, sensor failures, material properties, dynamic load histories and damage accumulation. Using an accurate physics-based model of the engine one can develop such a prognostic approach. We present a nonlinear dynamical model of a two-spool turbine engine developed from first principles. The simulation model has been implemented using MATLAB/Simulink. It is used with the Kalman Filter-based diagnostic technique previously discussed in literature to detect and isolate sensor faults. A literature review of the developments in the area of prognostics is also presented, along with the problems and challenges.
This book presents new studies in the area of turbomachine mathematical modeling with a focus on models applied to developing engine control and diagnostic systems. The book contains one introductory and four main chapters. The introductory chapter describes the area of modeling of gas and wind turbines and shows the demand for further improvement of the models. The first three main chapters offer particular improvements in gas turbine modeling. First, a novel methodology for the modeling of engine starting is presented. Second, a thorough theoretical comparative analysis is performed for the models of engine internal gas capacities, and practical recommendations are given on model applications, in particular for engine control purposes. Third, multiple algorithms for calculating important unmeasured parameters for engine diagnostics are proposed and compared. It is proven that the best algorithms allow accurate prognosis of engine remaining lifetime.The field of wind turbine modeling is presented in the last main chapter. It introduces a general-purpose model that describes both aerodynamic and electric parts of a wind power plant. Such a detailed physics-based model will help with the development of more accurate control and diagnostic systems.In this way, this book includes four new studies in the area of gas and wind turbine modeling. These studies will be interesting and useful for specialists in turbine engine control and diagnostics.
Abstract: Modeling of turbine engines has been an important topic for a long time, because of its importance in simulation and controller design. This research work has concentrated on turbine engine model development, and control of turbine engines using MATLAB / SIMULINK. The model simulates the dynamics of the various turbine engine components. Mathematical equations derived from first principles are used for modeling the system. Algebraic equations model the thermodynamic processes, while differential equations are used to model the dynamic nature of the turbine engine. The dynamics of the turbine engine can be studied using this SIMULINK model. Engine health monitoring systems (including engine diagnostics and prognostics) can help reduce the total labor needed to maintain engines and allow planning of maintenance schedules to accomplish preventive maintenance more effectively. various failure detection techniques available in the literature are reviewed in order to perform Turbine Engine Diagnostics. The benefits of using a Bank of Kalman filters for sensor fault diagnostics were understood and the technique is applied for diagnostics of the Simulink model of the turbine engine developed. A literature review of turbine engine prognostic techniques reveals the potential of model-based prognostic methods to accurately predict the remaining useful life of various turbine engine components.
The propulsion system is arguably the most critical part of the aircraft; it certainly is the single most expensive component of the vehicle. Ensuring that engines operate reliably without major maintenance issues is an important goal for all operators, military or commercial. Engine health management (EHM) is a critical piece of this puzzle and has been a part of the engine maintenance for more than five decades. In fact, systematic condition monitoring was introduced for engines before it was applied to other systems on the aircraft. Diagnostics and Prognostics of Aerospace Engines is a collection of technical papers from the archives of SAE International, which introduces the reader to a brief history of EHM, presents some examples of EHM functions, and outlines important future trends. The goal of engine health maintenance is ultimately to reduce the cost of operations by catching problems before they become major issues, by helping reduce repair times through diagnostics, and by facilitating logistic optimization through prognostic estimates. Diagnostics and Prognostics of Aerospace Engines shows that the essence of these goals has not changed over time.
Gas Turbines Modeling, Simulation, and Control: Using Artificial Neural Networks provides new approaches and novel solutions to the modeling, simulation, and control of gas turbines (GTs) using artificial neural networks (ANNs). After delivering a brief introduction to GT performance and classification, the book:Outlines important criteria to consi
A computer program titled GENENG II which calculates steady-state design and off-design jet engine performance for two- or three-spool turbofans with one, two, or three nozzles is described. Included in the report are complete FORTRAN IV listings of the program with sample results for nine basic turbofan engines that can be calculated: (1) three-spool, three-stream engine; (2) two-spool, three-stream, boosted-fan engine; (3) two-spool, three-stream, supercharged-compressor engine; (4) three-spool, two-stream engine; (5) two-spool, two stream engine; (6) three-spool, three-stream, aft-fan engine; (7) two-spool, three-stream, aft-fan engine; (8) two-spool, two-stream, aft-fan engine; (9) three-spool, two-stream, aftfan engine. The simulation of other engines by using logical variables built into the program is also described. The computer program is available from the authors.
Advanced Control of Turbofan Engines describes the operational performance requirements of turbofan (commercial) engines from a controls systems perspective, covering industry-standard methods and research-edge advances. This book allows the reader to design controllers and produce realistic simulations using public-domain software like CMAPSS: Commercial Modular Aero-Propulsion System Simulation, whose versions are released to the public by NASA. The scope of the book is centered on the design of thrust controllers for both steady flight and transient maneuvers. Classical control theory is not dwelled on, but instead an introduction to general undergraduate control techniques is provided. Advanced Control of Turbofan Engines is ideal for graduate students doing research in aircraft engine control and non-aerospace oriented control engineers who need an introduction to the field.