Download Free Modeling Biomolecular Networks In Cells Book in PDF and EPUB Free Download. You can read online Modeling Biomolecular Networks In Cells and write the review.

Modeling Biomolecular Networks in Cells shows how the interaction between the molecular components of basic living organisms can be modelled mathematically and the models used to create artificial biological entities within cells. Such forward engineering is a difficult task but the nonlinear dynamical methods espoused in this book simplify the biology so that it can be successfully understood and the synthesis of simple biological oscillators and rhythm-generators made feasible. Such simple units can then be co-ordinated using intercellular signal biomolecules. The formation of such man-made multicellular networks with a view to the production of biosensors, logic gates, new forms of integrated circuitry based on "gene-chips" and even biological computers is an important step in the design of faster and more flexible "electronics". The book also provides theoretical frameworks and tools with which to analyze the nonlinear dynamical phenomena which arise from the connection of building units in a biomolecular network.
Alternative techniques and tools for analyzing biomolecular networks With the recent rapid advances in molecular biology, high-throughput experimental methods have resulted in enormous amounts of data that can be used to study biomolecular networks in living organisms. With this development has come recognition of the fact that a complicated living organism cannot be fully understood by merely analyzing individual components. Rather, it is the interactions of components or biomolecular networks that are ultimately responsible for an organism's form and function. This book addresses the important need for a new set of computational tools to reveal essential biological mechanisms from a systems biology approach. Readers will get comprehensive coverage of analyzing biomolecular networks in cellular systems based on available experimental data with an emphasis on the aspects of network, system, integration, and engineering. Each topic is treated in depth with specific biological problems and novel computational methods: GENE NETWORKS—Transcriptional regulation; reconstruction of gene regulatory networks; and inference of transcriptional regulatory networks PROTEIN INTERACTION NETWORKS—Prediction of protein-protein interactions; topological structure of biomolecular networks; alignment of biomolecular networks; and network-based prediction of protein function METABOLIC NETWORKS AND SIGNALING NETWORKS—Analysis, reconstruction, and applications of metabolic networks; modeling and inference of signaling networks; and other topics and new trends In addition to theoretical results and methods, many computational software tools are referenced and available from the authors' Web sites. Biomolecular Networks is an indispensable reference for researchers and graduate students in bioinformatics, computational biology, systems biology, computer science, and applied mathematics.
Biological systems are inherently stochastic and uncertain. Thus, research in bioinformatics, biomedical engineering and computational biology has to deal with a large amount of uncertainties. Fuzzy logic has shown to be a powerful tool in capturing different uncertainties in engineering systems. In recent years, fuzzy logic based modeling and analysis approaches are also becoming popular in analyzing biological data and modeling biological systems. Numerous research and application results have been reported that demonstrated the effectiveness of fuzzy logic in solving a wide range of biological problems found in bioinformatics, biomedical engineering, and computational biology. Contributed by leading experts world-wide, this edited book contains 16 chapters presenting representative research results on the application of fuzzy systems to genome sequence assembly, gene expression analysis, promoter analysis, cis-regulation logic analysis and synthesis, reconstruction of genetic and cellular networks, as well as biomedical problems, such as medical image processing, electrocardiogram data classification and anesthesia monitoring and control. This volume is a valuable reference for researchers, practitioners, as well as graduate students working in the field of bioinformatics, biomedical engineering and computational biology.
Computational modeling is emerging as a powerful new approach to study and manipulate biological systems. Multiple methods have been developed to model, visualize, and rationally alter systems at various length scales, starting from molecular modeling and design at atomic resolution to cellular pathways modeling and analysis. Higher time and length scale processes, such as molecular evolution, have also greatly benefited from new breeds of computational approaches. This book provides an overview of the established computational methods used for modeling biologically and medically relevant systems.
Cellular automata make up a class of completely discrete dynamical systems, which have became a core subject in the sciences of complexity due to their conceptual simplicity, easiness of implementation for computer simulation, and their ability to exhibit a wide variety of amazingly complex behavior. The feature of simplicity behind complexity of cellular automata has attracted the researchers' attention from a wide range of divergent fields of study of science, which extend from the exact disciplines of mathematical physics up to the social ones, and beyond. Numerous complex systems containing many discrete elements with local interactions have been and are being conveniently modelled as cellular automata. In this book, the versatility of cellular automata as models for a wide diversity of complex systems is underlined through the study of a number of outstanding problems using these innovative techniques for modelling and simulation.
Mathematical models have become invaluable tools for understanding the intricate dynamic behavior of complex biochemical and biological systems. Among computational strategies, logical modeling has been recently gaining interest as an alternative approach to address network dynamics. Due to its advantages, including scalability and independence of kinetic parameters, the logical modeling framework is becoming increasingly popular to study the dynamics of highly interconnected systems, such as cell cycle progression, T cell differentiation and gene regulation. Novel tools and standards have been developed to increase the interoperability of logical models, which can now be employ to respond a variety of biological questions. This Research Topic brings together the most recent and cutting-edge approaches in the area of logical modeling including, among others, novel biological applications, software development and model analysis techniques.
By providing expositions to modeling principles, theories, computational solutions, and open problems, this reference presents a full scope on relevant biological phenomena, modeling frameworks, technical challenges, and algorithms. Up-to-date developments of structures of biomolecules, systems biology, advanced models, and algorithms Sampling techniques for estimating evolutionary rates and generating molecular structures Accurate computation of probability landscape of stochastic networks, solving discrete chemical master equations End-of-chapter exercises
The book deals with engineering aspects of the two emerging and intertwined fields of synthetic and systems biology. Both fields hold promise to revolutionize the way molecular biology research is done, the way today’s drug discovery works and the way bio-engineering is done. Both fields stress the importance of building and characterizing small bio-molecular networks in order to synthesize incrementally and understand large complex networks inside living cells. Reminiscent of computer-aided design (CAD) of electronic circuits, abstraction is believed to be the key concept to achieve this goal. It allows hiding the overwhelming complexity of cellular processes by encapsulating network parts into abstract modules. This book provides a unique perspective on how concepts and methods from CAD of electronic circuits can be leveraged to overcome complexity barrier perceived in synthetic and systems biology.
This book presents the most recent mathematical approaches to the growing research area of networks, oscillations, and collective motions in the context of biological systems. Bringing together the results of multiple studies of different biological systems, this book sheds light on the relations among these research themes. Included in this book are the following topics: feedback systems with time delay and threshold of sensing (dead zone), robustness of biological networks from the point of view of dynamical systems, the hardware-oriented neuron modeling approach, a universal mechanism governing the entrainment limit under weak forcing, the robustness mechanism of open complex systems, situation-dependent switching of the cues primarily relied on by foraging ants, and group chase and escape. Research on different biological systems is presented together, not separated by specializations or by model systems. Therefore, the book provides diverse perspectives at the forefront of current mathematical research on biological systems, especially focused on networks, oscillations, and collective motions. This work is aimed at advanced undergraduate, graduate, and postdoctoral students, as well as scientists and engineers. It will also be of great use for professionals in industries and service sectors owing to the applicability of topics such as networks and synchronizations.
An introduction to the quantitative modeling of biological processes, presenting modeling approaches, methodology, practical algorithms, software tools, and examples of current research. The quantitative modeling of biological processes promises to expand biological research from a science of observation and discovery to one of rigorous prediction and quantitative analysis. The rapidly growing field of quantitative biology seeks to use biology's emerging technological and computational capabilities to model biological processes. This textbook offers an introduction to the theory, methods, and tools of quantitative biology. The book first introduces the foundations of biological modeling, focusing on some of the most widely used formalisms. It then presents essential methodology for model-guided analyses of biological data, covering such methods as network reconstruction, uncertainty quantification, and experimental design; practical algorithms and software packages for modeling biological systems; and specific examples of current quantitative biology research and related specialized methods. Most chapters offer problems, progressing from simple to complex, that test the reader's mastery of such key techniques as deterministic and stochastic simulations and data analysis. Many chapters include snippets of code that can be used to recreate analyses and generate figures related to the text. Examples are presented in the three popular computing languages: Matlab, R, and Python. A variety of online resources supplement the the text. The editors are long-time organizers of the Annual q-bio Summer School, which was founded in 2007. Through the school, the editors have helped to train more than 400 visiting students in Los Alamos, NM, Santa Fe, NM, San Diego, CA, Albuquerque, NM, and Fort Collins, CO. This book is inspired by the school's curricula, and most of the contributors have participated in the school as students, lecturers, or both. Contributors John H. Abel, Roberto Bertolusso, Daniela Besozzi, Michael L. Blinov, Clive G. Bowsher, Fiona A. Chandra, Paolo Cazzaniga, Bryan C. Daniels, Bernie J. Daigle, Jr., Maciej Dobrzynski, Jonathan P. Doye, Brian Drawert, Sean Fancer, Gareth W. Fearnley, Dirk Fey, Zachary Fox, Ramon Grima, Andreas Hellander, Stefan Hellander, David Hofmann, Damian Hernandez, William S. Hlavacek, Jianjun Huang, Tomasz Jetka, Dongya Jia, Mohit Kumar Jolly, Boris N. Kholodenko, Markek Kimmel, Michał Komorowski, Ganhui Lan, Heeseob Lee, Herbert Levine, Leslie M Loew, Jason G. Lomnitz, Ard A. Louis, Grant Lythe, Carmen Molina-París, Ion I. Moraru, Andrew Mugler, Brian Munsky, Joe Natale, Ilya Nemenman, Karol Nienałtowski, Marco S. Nobile, Maria Nowicka, Sarah Olson, Alan S. Perelson, Linda R. Petzold, Sreenivasan Ponnambalam, Arya Pourzanjani, Ruy M. Ribeiro, William Raymond, William Raymond, Herbert M. Sauro, Michael A. Savageau, Abhyudai Singh, James C. Schaff, Boris M. Slepchenko, Thomas R. Sokolowski, Petr Šulc, Andrea Tangherloni, Pieter Rein ten Wolde, Philipp Thomas, Karen Tkach Tuzman, Lev S. Tsimring, Dan Vasilescu, Margaritis Voliotis, Lisa Weber