Download Free Modeling Biased Technical Change Implications For Climate Policy Book in PDF and EPUB Free Download. You can read online Modeling Biased Technical Change Implications For Climate Policy and write the review.

The issues of technology and uncertainty are very much at the heart of the policy debate of how much to control greenhouse gas emissions. The costs of doing so are present and high while the benefits are very much in the future and, most importantly, they are highly uncertain. Whilst there is broad consensus on the key elements of climate change science and agreement that near-term actions are needed to prevent dangerous anthropogenic interference with the climate system, there is little agreement on the costs and benefits of climate policy. The book looks at different ways of reconciling the needs for sustainability and equity with the costs of action now. Presenting a compendium of methodologies for evaluating the economic impact of technological innovation upon climate-change policy, this book describes mathematical models and their predictions. The goal is to provide a practitioner’s guide for doing the science of economics and climate change. Because the assumptions motivating different problems in the economics of climate change have different complexities, a number of models are presented with varying levels of difficulty: reduced-form and structural, partial- and general-equilibrium, closed-form and computational. A unifying theme of these models is the incorporation of a number of price and quantity instruments and an analysis of their respective efficacies. This book presents models that contain structural uncertainty, i.e., uncertainty that economic agents respond to via their risk attitudes. The novelty of this book is to relate the effects of risk and risk attitudes to environment-improving technological innovation.
This open access book analyzes and seeks to consolidate the use of robust quantitative tools and qualitative methods for the design and assessment of energy and climate policies. In particular, it examines energy and climate policy performance and associated risks, as well as public acceptance and portfolio analysis in climate policy, and presents methods for evaluating the costs and benefits of flexible policy implementation as well as new framings for business and market actors. In turn, it discusses the development of alternative policy pathways and the identification of optimal switching points, drawing on concrete examples to do so. Lastly, it discusses climate change mitigation policies’ implications for the agricultural, food, building, transportation, service and manufacturing sectors.
Given that technologies to significantly reduce fossil fuel emissions are currently unavailable or only available at high cost, technological change will be a key component of any long-term strategy to reduce greenhouse gas emissions. In light of this, the amount of research on the pace, direction, and benefits of environmentally-friendly technological change has grown dramatically in recent years. This research includes empirical work estimating the magnitude of these effects, and modeling exercises designed to simulate the importance of endogenous technological change in response to climate policy. Unfortunately, few attempts have been made to connect these two streams of research. This paper attempts to bridge that gap. We review both the empirical and modeling literature on technological change. Our focus includes the research and development process, learning by doing, the role of public versus private research, and technology diffusion. Our goal is to provide an agenda for how both empirical and modeling research in these areas can move forward in a complementary fashion. In doing so, we discuss both how models used for policy evaluation can better capture empirical phenomena, and how empirical research can better address the needs of models used for policy evaluation.
Induced technological change (ITC), whereby the relative price effects of reducing greenhouse gas emissions stimulate innovation that mitigates the cost of abatement, is both tantalizing to decision makers and challenging to represent in the computational economic and engineering models used to analyze climate change policy. This overview reconciles the divergent views of technology and technological change within different types of models, elucidates the theoretical underpinnings of ITC, introduces the reader to the techniques of their practical implementation, and evaluates the implications for models' results.
Much is written in the popular literature about the current pace of technological change. But do we have enough scientific knowledge about the sources and management of innovation to properly inform policymaking in technology dependent domains such as energy and the environment? While it is agreed that technological change does not 'fall from heaven like autumn leaves,' the theory, data, and models are deficient. The specific mechanisms that govern the rate and direction of inventive activity, the drivers and scope for incremental improvements that occur during technology diffusion, and the spillover effects that cross-fertilize technological innovations remain poorly understood. In a work that will interest serious readers of history, policy, and economics, the editors and their distinguished contributors offer a unique, single volume overview of the theoretical and empirical work on technological change. Beginning with a survey of existing research, they provide analysis and case studies in contexts such as medicine, agriculture, and power generation, paying particular attention to what technological change means for efficiency, productivity, and reduced environmental impacts. The book includes a historical analysis of technological change, an examination of the overall direction of technological change, and general theories about the sources of change. The contributors empirically test hypotheses of induced innovation and theories of institutional innovation. They propose ways to model induced technological change and evaluate its impact, and they consider issues such as uncertainty in technology returns, technology crossover effects, and clustering. A copublication o Resources for the Future (RFF) and the International Institute for Applied Systems Analysis (IIASA).
Technical change is generally considered the key to the solution of environmental problems, in particular global phenomena like climate change. Scientists differ in their views on the thaumaturgic virtues of technical change. There are those who are confident that pollution-free technologies will materialize at some time in the future and will prevent humans from suffering the catastrophic consequences of climate change. Others believe that there are inexpensive technologies already available and argue the case for no-regret adoption policies (e.g. subsidies). Others again believe that the process of technological change responds to economic stimuli. These economic incentives to technological innovation are provided not only by forces that are endogenous to the economic system, but also by suitably designed environmental and innovation policies. In this paper, we consider and translate into analytical counterparts these different views of technical change. We then study alternative formulations of technical change and, with the help of a computerized climate-economy model, carry out a number of optimization runs in order to assess what type of technical change plays a role (assuming it does) in the evaluation of the impact of climate change and of the policies designed to cope with it.