Download Free Modeling And Simulation Of Reacting Flows In Lean Premixed Swirl Stabilized Gas Turbine Combustor Book in PDF and EPUB Free Download. You can read online Modeling And Simulation Of Reacting Flows In Lean Premixed Swirl Stabilized Gas Turbine Combustor and write the review.

Combustion in a lean pre-mixed (LPM) combustor may become unstable due to small changes in geometry and the manner in which reactants are introduced. This may lead to excessive thermal loads and possible off-design operation. A comprehensive understanding of combustion instability is therefore needed. The present study aims to analyze the flow and flame dynamics in a model LPM gas turbine combustor in LPM combustion. Fluent is used as the flow solver for the present study. The 3-D Navier-Stokes equations are solved along with finite-rate chemical reaction equations and variable thermo-physical properties. Large-eddy-simulation (LES) technique is used to model turbulence. The dynamic version of the Smagorinsky-Lilly model is employed to describe subgrid-scale turbulent motions and their effect on large-scale structures. At first a non-reactive LES was performed in model round and LM6000 combustor. The results for time averaged mean velocity are compared with the previous LES work by Grinstein et al. and Kim et al. Using non-reacting case for LM6000, reactive simulation was initiated, with lean methane-air mixture with equivalence ratio 0.56. Species transport equation is solved for global methane-air two-step reaction with six volumetric species to predict the local mass fraction of each species. The reaction rates that appear as source terms in the species transport equation are computed using finite-rate/eddy-dissipation model, which computes both, the Arrhenius rate and the mixing rate and uses the smaller of the two. It is observed that as the flow enters the chamber, it bifurcates in two shear layers forming a prong like structure. The layers further tend to reattach to the wall at a distance approximately equal to 3D. Counter-clockwise recirculation zones are formed in the corners, whereas clock-wise toroidal vortex structure is formed in the center. The flame is located in between these vortex structures and thus experiences shear-layer instabilities. It is also noticed that the eddy structure in case of reacting case is thicker than that of the non-reacting case. This is mainly due to the temperature dependent viscosity, which has a stabilizing effect on the flow.
Reviews our current understanding of the subject. For graduate students and researchers in computational fluid dynamics and turbulence.
Blending fuels with hydrogen offers the potential to reduce NOx and CO2 emissions in gas turbines, but doing so introduces potential new problems such as flashback. Flashback can lead to thermal overload and destruction of hardware in the turbine engine, with potentially expensive consequences. The little research on flashback that is available is fragmented. Flashback Mechanisms in Lean Premixed Gas Turbine Combustion by Ali Cemal Benim will address not only the overall issue of the flashback phenomenon, but also the issue of fragmented and incomplete research. - Presents a coherent review of flame flashback (a classic problem in premixed combustion) and its connection with the growing trend of popularity of more-efficient hydrogen-blend fuels - Begins with a brief review of industrial gas turbine combustion technology - Covers current environmental and economic motivations for replacing natural gas with hydrogen-blend fuels
With regard to both the environmental sustainability and operating efficiency demands, modern combustion research has to face two main objectives, the optimization of combustion efficiency and the reduction of pollutants. This book reports on the combustion research activities carried out within the Collaborative Research Center (SFB) 568 “Flow and Combustion in Future Gas Turbine Combustion Chambers” funded by the German Research Foundation (DFG). This aimed at designing a completely integrated modeling and numerical simulation of the occurring very complex, coupled and interacting physico-chemical processes, such as turbulent heat and mass transport, single or multi-phase flows phenomena, chemical reactions/combustion and radiation, able to support the development of advanced gas turbine chamber concepts
The main objective of this work was to develop a large-eddy simulation (LES) based computational tool for application to both premixed and non- premixed combustion of low-Mach number flows in gas turbines. In the recent past, LES methodology has emerged as a viable tool for modeling turbulent combustion. LES is particularly well-suited for the compu- tation of large scale mixing, which provides a firm starting point for the small scale models which describe the reaction processes. Even models developed in the context of Reynolds averaged Navier-Stokes (RANS) exhibit superior results in the LES framework. Although LES is a widespread topic of research, in industrial applications it is often seen as a less attractive option than RANS, which is computationally inexpensive and often returns sufficiently accurate results. However, there are many commonly encountered problems for which RANS is unsuitable. This work is geared towards such instances, with a solver developed for use in unsteady reacting flows on unstructured grids. The work is divided into two sections. First, a robust CFD solver for a generalized incompressible, reacting flow configuration is developed. The computational algorithm, which com- bines elements of the low-Mach number approximation and pressure projection methods with other techniques, is described. Coupled to the flow solver is a combustion model based on the flamelet progress variable approach (FPVA), adapted to current applications. Modifications which promote stability and accuracy in the context of unstructured meshes are also implemented. Second, the LES methodology is used to study three specific problems. The first is a channel geometry with a lean premixed hydrogen mixture, in which the unsteady flashback phenomenon is induced. DNS run in tandem is used for establishing the validity of the LES. The second problem is a swirling gas turbine combustor, which extends the channel flashback study to a more practical application with stratified premixed methane and hydrogen/methane mixtures. Experimental results are used for comparison. Finally, the third problem tests the solver's abilities further, using a more complex fuel JP-8, Lagrangian fuel droplets, and a complicated geometry. In this last configu- ration, experimental results validate early simulations while later simulations examine the physics of reacting sprays under high centripetal loading.
This book highlights recent research advances in the area of turbulent flows from both industry and academia for applications in the area of Aerospace and Mechanical engineering. Contributions include modeling, simulations and experiments meant for researchers, professionals and students in the area.
A work on turbulent premixed combustion is important because of increased concern about the environmental impact of combustion and the search for new combustion concepts and technologies. An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts. Lean premixed flames have the potential to offer ultra-low emission levels, but they are notoriously susceptible to combustion oscillations. Thus, sophisticated control measures are inevitably required. The editors' intent is to set out the modeling aspects in the field of turbulent premixed combustion. Good progress has been made on this topic, and this cohesive volume contains contributions from international experts on various subtopics of the lean premixed flame problem.
This book reflects the outcome of the 1st International Workshop on Turbulent Spray Combustion held in 2009 in Corsica (France). The focus is on reporting the progress of experimental and numerical techniques in two-phase flows, with emphasis on spray combustion. The motivation for studies in this area is that knowledge of the dominant phenomena and their interactions in such flow systems is essential for the development of predictive models and their use in combustor and gas turbine design. This necessitates the development of accurate experimental methods and numerical modelling techniques. The workshop aimed at providing an opportunity for experts and young researchers to present the state-of-the-art, discuss new developments or techniques and exchange ideas in the areas of experimentations, modelling and simulation of reactive multiphase flows. The first two papers reflect the contents of the invited lectures, given by experts in the field of turbulent spray combustion. The first concerns computational issues, while the second deals with experiments. These lectures initiated very interesting and interactive discussions among the researchers, further pursued in contributed poster presentations. Contributions 3 and 4 focus on some aspects of the impact of the interaction between fuel evaporation and combustion on spray combustion in the context of gas turbines, while the final article deals with the interaction between evaporation and turbulence.
In spite of the increasing presence of renewable energy sources, fossil fuels will remain the primary supply of the world's energy needs for the upcoming future. Modern gas-turbine based systems represent one of the most efficient large-scale power generation technology currently available. Alongside this, gas-turbine power plants operate with very low emissions, have flexible operational characteristics and are able to utilize a broad range of fuels. It is expected that gas-turbine based plants will play an important role as an effective means of converting combustion energy in the future as well, because of the vast potential energy savings. The numerical approach to the design of complex systems such as gas-turbines has gained a continuous growth of interest in the last few decades. This because simulations are foreseen to provide a tremendous increase in the combustor efficiency, fuel-flexibility and quality over the next future. In this dissertation, an advanced turbulent combustion technique is implemented and progressively developed for the simulation of all the features that are typically observed in stationary gas-turbine combustion, including hydrogen as a fuel. The developed turbulent combustion model retains most of the accuracy of a detailed simulation while drastically reducing its computational time. As a result of this work, the advancement of power generation plants can be accelerated, paving the way for future developments of alternative fuel usage in a cleaner and more efficient combustion.