Download Free Modeling And Simulation Based Data Engineering Book in PDF and EPUB Free Download. You can read online Modeling And Simulation Based Data Engineering and write the review.

Data Engineering has become a necessary and critical activity for business, engineering, and scientific organizations as the move to service oriented architecture and web services moves into full swing. Notably, the US Department of Defense is mandating that all of its agencies and contractors assume a defining presence on the Net-centric Global Information Grid. This book provides the first practical approach to data engineering and modeling, which supports interoperabililty with consumers of the data in a service- oriented architectures (SOAs). Although XML (eXtensible Modeling Language) is the lingua franca for such interoperability, it is not sufficient on its own. The approach in this book addresses critical objectives such as creating a single representation for multiple applications, designing models capable of supporting dynamic processes, and harmonizing legacy data models for web-based co-existence. The approach is based on the System Entity Structure (SES) which is a well-defined structure, methodology, and practical tool with all of the functionality of UML (Unified Modeling Language) and few of the drawbacks. The SES originated in the formal representation of hierarchical simulation models. So it provides an axiomatic formalism that enables automating the development of XML dtds and schemas, composition and decomposition of large data models, and analysis of commonality among structures. Zeigler and Hammond include a range of features to benefit their readers. Natural language, graphical and XML forms of SES specification are employed to allow mapping of legacy meta-data. Real world examples and case studies provide insight into data engineering and test evaluation in various application domains. Comparative information is provided on concepts of ontologies, modeling and simulation, introductory linguistic background, and support options enable programmers to work with advanced tools in the area. The website of the Arizona Center for Integrative Modeling and Simulation, co-founded by Zeigler in 2001, provides links to downloadable software to accompany the book. The only practical guide to integrating XML and web services in data engineering Introduces linguistic levels of interoperability for effective information exchange Covers the interoperability standards mandated by national and international agencies Complements Zeigler's classic THEORY OF MODELING AND SIMULATION
This book describes the latest research developments in modeling and simulation in industrial engineering. Topics such as decision and performance analysis and industrial control systems are described. Case studies in industry and services as well as engineering economy and cost estimation are also covered.
This easy to read text provides a broad introduction to the fundamental concepts of modeling and simulation (M&S) and systems engineering, highlighting how M&S is used across the entire systems engineering lifecycle. Features: reviews the full breadth of technologies, methodologies and uses of M&S, rather than just focusing on a specific aspect of the field; presents contributions from specialists in each topic covered; introduces the foundational elements and processes that serve as the groundwork for understanding M&S; explores common methods and methodologies used in M&S; discusses how best to design and execute experiments, covering the use of Monte Carlo techniques, surrogate modeling and distributed simulation; explores the use of M&S throughout the systems development lifecycle, describing a number of methods, techniques, and tools available to support systems engineering processes; provides a selection of case studies illustrating the use of M&S in systems engineering across a variety of domains.
Modeling and Simulation in Python teaches readers how to analyze real-world scenarios using the Python programming language, requiring no more than a background in high school math. Modeling and Simulation in Python is a thorough but easy-to-follow introduction to physical modeling—that is, the art of describing and simulating real-world systems. Readers are guided through modeling things like world population growth, infectious disease, bungee jumping, baseball flight trajectories, celestial mechanics, and more while simultaneously developing a strong understanding of fundamental programming concepts like loops, vectors, and functions. Clear and concise, with a focus on learning by doing, the author spares the reader abstract, theoretical complexities and gets right to hands-on examples that show how to produce useful models and simulations.
This book provide a comprehensive set of modeling methods for data and uncertainty analysis, taking readers beyond mainstream methods and focusing on techniques with a broad range of real-world applications. The book will be useful as a textbook for graduate students, or as a training manual in the fields of calibration and testing. The work may also serve as a reference for metrologists, mathematicians, statisticians, software engineers, chemists, and other practitioners with a general interest in measurement science.
Model Engineering for Simulation provides a systematic introduction to the implementation of generic, normalized and quantifiable modeling and simulation using DEVS formalism. It describes key technologies relating to model lifecycle management, including model description languages, complexity analysis, model management, service-oriented model composition, quantitative measurement of model credibility, and model validation and verification. The book clearly demonstrates how to construct computationally efficient, object-oriented simulations of DEVS models on parallel and distributed environments. Guides systems and control engineers in the practical creation and delivery of simulation models using DEVS formalism Provides practical methods to improve credibility of models and manage the model lifecycle Helps readers gain an overall understanding of model lifecycle management and analysis Supported by an online ancillary package that includes an instructors and student solutions manual
This book provides an open platform to establish and share knowledge developed by scholars, scientists, and engineers from all over the world, about various applications of the modeling and simulation in the design process of products, in various engineering fields. The book consists of 12 chapters arranged in two sections (3D Modeling and Virtual Prototyping), reflecting the multidimensionality of applications related to modeling and simulation. Some of the most recent modeling and simulation techniques, as well as some of the most accurate and sophisticated software in treating complex systems, are applied. All the original contributions in this book are jointed by the basic principle of a successful modeling and simulation process: as complex as necessary, and as simple as possible. The idea is to manipulate the simplifying assumptions in a way that reduces the complexity of the model (in order to make a real-time simulation), but without altering the precision of the results.
This illuminating text/reference presents a review of the key aspects of the modeling and simulation (M&S) life cycle, and examines the challenges of M&S in different application areas. The authoritative work offers valuable perspectives on the future of research in M&S, and its role in engineering complex systems. Topics and features: reviews the challenges of M&S for urban infrastructure, healthcare delivery, automated vehicle manufacturing, deep space missions, and acquisitions enterprise; outlines research issues relating to conceptual modeling, covering the development of explicit and unambiguous models, communication and decision-making, and architecture and services; considers key computational challenges in the execution of simulation models, in order to best exploit emerging computing platforms and technologies; examines efforts to understand and manage uncertainty inherent in M&S processes, and how these can be unified under a consistent theoretical and philosophical foundation; discusses the reuse of models and simulations to accelerate the simulation model development process. This thought-provoking volume offers important insights for all researchers involved in modeling and simulation across the full spectrum of disciplines and applications, defining a common research agenda to support the entire M&S research community.
This practical book presents fundamental concepts and issues in computer modeling and simulation (M&S) in a simple and practical way for engineers, scientists, and managers who wish to apply simulation successfully to their real-world problems. It offers a concise approach to the coverage of generic (tool-independent) M&S concepts and enables engineering practitioners to easily learn, evaluate, and apply various available simulation concepts. Worked out examples are included to illustrate the concepts and an example modeling application is continued throughout the chapters to demonstrate the techniques. The book discusses modeling purposes, scoping a model, levels of modeling abstraction, the benefits and cost of including randomness, types of simulation, and statistical techniques. It also includes a chapter on modeling and simulation projects and how to conduct them for customer and engineer benefit and covers the stages of a modeling and simulation study, including process and system investigation, data collection, modeling scoping and production, model verification and validation, experimentation, and analysis of results.
Modeling and Simulation in Python teaches readers how to analyze real-world scenarios using the Python programming language, requiring no more than a background in high school math. Modeling and Simulation in Python is a thorough but easy-to-follow introduction to physical modeling—that is, the art of describing and simulating real-world systems. Readers are guided through modeling things like world population growth, infectious disease, bungee jumping, baseball flight trajectories, celestial mechanics, and more while simultaneously developing a strong understanding of fundamental programming concepts like loops, vectors, and functions. Clear and concise, with a focus on learning by doing, the author spares the reader abstract, theoretical complexities and gets right to hands-on examples that show how to produce useful models and simulations.