Download Free Modeling And Control In Air Conditioning Systems Book in PDF and EPUB Free Download. You can read online Modeling And Control In Air Conditioning Systems and write the review.

This book investigates the latest modeling and control technologies in the context of air-conditioning systems. Firstly, it introduces the state-space method for developing dynamic models of all components in a central air-conditioning system. The models are primarily nonlinear and based on the fundamental principle of energy and mass conservation, and are transformed into state-space form through linearization. The book goes on to describe and discuss the state-space models with the help of graph theory and the structure-matrix theory. Subsequently, virtual sensor calibration and virtual sensing methods (which are very useful for real system control) are illustrated together with a case study. Model-based predictive control and state-space feedback control are applied to air-conditioning systems to yield better local control, while the air-side synergic control scheme and a global optimization strategy based on the decomposition-coordination method are developed so as to achieve energy conservation in the central air-conditioning system. Lastly, control strategies for VAV systems including total air volume control and trim & response static pressure control are investigated in practice.
First book to consider HVAC control in analytical depth Covers all new developments in HVAC control systems Looks at systems both in the UK and abroad Considers cutting edge technology and topics such as fuzzy logic
Internal combustion engines still have a potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. These goals can be achieved with help of control systems. Modeling and Control of Internal Combustion Engines (ICE) addresses these issues by offering an introduction to cost-effective model-based control system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed in the text and selected feedforward and feedback control problems are discussed. The appendix contains a summary of the most important controller analysis and design methods, and a case study that analyzes a simplified idle-speed control problem. The book is written for students interested in the design of classical and novel ICE control systems.
This book includes best selected, high-quality research papers presented at the International Conference on Intelligent Manufacturing and Energy Sustainability (ICIMES 2020) held at the Department of Mechanical Engineering, Malla Reddy College of Engineering & Technology (MRCET), Maisammaguda, Hyderabad, India, during August 21-22, 2020. It covers topics in the areas of automation, manufacturing technology and energy sustainability and also includes original works in the intelligent systems, manufacturing, mechanical, electrical, aeronautical, materials, automobile, bioenergy and energy sustainability.
Control Systems for Heating, Ventilating and Air Conditioning, Sixth Edition is complete and covers both hardware control systems and modern control technology. The material is presented without bias and without prejudice toward particular hardware or software. Readers with an engineering degree will be reminded of the psychrometric processes associated with heating and air conditioning as they learn of the various controls schemes used in the variety of heating and air conditioning system types they will encountered in the field. Maintenance technicians will also find the book useful because it describes various control hardware and control strategies that were used in the past and are prevalent in most existing heating and air conditioning systems. Designers of new systems will find the fundamentals described in this book to be a useful starting point, and they will also benefit from descriptions of new digital technologies and energy management systems. This technology is found in modern building HVAC system designs.
Decision making and control are two fields with distinct methods for solving problems, and yet they are closely related. This book bridges the gap between decision making and control in the field of fuzzy decisions and fuzzy control, and discusses various ways in which fuzzy decision making methods can be applied to systems modeling and control.Fuzzy decision making is a powerful paradigm for dealing with human expert knowledge when one is designing fuzzy model-based controllers. The combination of fuzzy decision making and fuzzy control in this book can lead to novel control schemes that improve the existing controllers in various ways. The following applications of fuzzy decision making methods for designing control systems are considered: ? Fuzzy decision making for enhancing fuzzy modeling. The values of important parameters in fuzzy modeling algorithms are selected by using fuzzy decision making.? Fuzzy decision making for designing signal-based fuzzy controllers. The controller mappings and the defuzzification steps can be obtained by decision making methods.? Fuzzy design and performance specifications in model-based control. Fuzzy constraints and fuzzy goals are used.? Design of model-based controllers combined with fuzzy decision modules. Human operator experience is incorporated for the performance specification in model-based control.The advantages of bringing together fuzzy control and fuzzy decision making are shown with multiple examples from real and simulated control systems
This book presents research advances in automotive AC systems using an interdisciplinary approach combining both thermal science, and automotive engineering. It covers a variety of topics, such as: control strategies, optimization algorithms, and diagnosis schemes developed for when automotive air condition systems interact with powertrain dynamics. In contrast to the rapid advances in the fields of building HVAC and automotive separately, an interdisciplinary examination of both areas has long been neglected. The content presented in this book not only reveals opportunities when interaction between on-board HVAC and powertrain is considered, but also provides new findings to achieve performance improvement using model-based methodologies.
At publication, The Control Handbook immediately became the definitive resource that engineers working with modern control systems required. Among its many accolades, that first edition was cited by the AAP as the Best Engineering Handbook of 1996. Now, 15 years later, William Levine has once again compiled the most comprehensive and authoritative resource on control engineering. He has fully reorganized the text to reflect the technical advances achieved since the last edition and has expanded its contents to include the multidisciplinary perspective that is making control engineering a critical component in so many fields. Now expanded from one to three volumes, The Control Handbook, Second Edition brilliantly organizes cutting-edge contributions from more than 200 leading experts representing every corner of the globe. They cover everything from basic closed-loop systems to multi-agent adaptive systems and from the control of electric motors to the control of complex networks. Progressively organized, the three volume set includes: Control System Fundamentals Control System Applications Control System Advanced Methods Any practicing engineer, student, or researcher working in fields as diverse as electronics, aeronautics, or biomedicine will find this handbook to be a time-saving resource filled with invaluable formulas, models, methods, and innovative thinking. In fact, any physicist, biologist, mathematician, or researcher in any number of fields developing or improving products and systems will find the answers and ideas they need. As with the first edition, the new edition not only stands as a record of accomplishment in control engineering but provides researchers with the means to make further advances.
Heating Ventilation and Air Conditioning by J. W. Mitchell and J. E. Braun provides foundational knowledge for the behavior and analysis of HVAC systems and related devices. The emphasis of this text is on the application of engineering principles that features tight integration of physical descriptions with a software program that allows performance to be directly calculated, with results that provide insight into actual behavior. Furthermore, the text offers more examples, end-of-chapter problems, and design projects that represent situations an engineer might face in practice and are selected to illustrate the complex and integrated nature of an HVAC system or piece of equipment.
This volume investigates simulation and computer-aided control system designs. The book covers the use of models and program packages, their theoretical aspects and practical applications, and uses illustrative case studies to give a comprehensive view of this fast developing science.