Download Free Modeling And Analytical Methods In Tribology Book in PDF and EPUB Free Download. You can read online Modeling And Analytical Methods In Tribology and write the review.

Improving our understanding of friction, lubrication, and fatigue, Modeling and Analytical Methods in Tribology presents a fresh approach to tribology that links advances in applied mathematics with fundamental problems in tribology related to contact elasticity, fracture mechanics, and fluid film lubrication. The authors incorporate the classical tenets of tribology while providing new mathematical solutions that address various shortcomings in existing theories. From contact interactions to contact fatigue life, the book connects traditionally separate areas of tribology research to create a coherent modeling methodology that encompasses asymptotic and numerical techniques. The authors often demonstrate the efficacy of the models by comparing predictions to experimental data. In most cases, they derive equations from first principles. They also rigorously prove problem formulations and derive certain solution properties. Solutions to problems are presented using simple analytical formulas, graphs, and tables. In addition, the end-of-chapter exercises highlight points important for comprehending the material and mastering the appropriate skills. Unlocking the secrets that govern the physics of lubricated and dry contacts, this book helps tribologists on their quest to reduce friction, minimize wear, and extend the operating life of mechanical equipment. It provides a real-world industrial perspective so that readers can attain a practical understanding of the material.
This book presents the basics and methods of nanoscale analytical techniques for tribology field. It gives guidance to the application of mechanical, microstructural, chemical characterization methods and topography analysis of materials. It provides an overview of the of state-of-the-art for researchers and practitioners in the field of tribology. It shows different examples to the application of mechanical, microstructural, chemical characterization methods and topography analysis of materials. Friction and Wear phenomena are governed by complexe processes at the interface of sliding surfaces. For a detailed understanding of these phenomena many surface sensitive techniques have become available in recent years. The applied methods are atom probe tomography, in situ TEM, SERS, NEXAFS, in situ XPS, nanoindentation and in situ Raman spectroscopy. A survey of new related numerical calculations completes this book. This concerns ab-initio coupling, numerical calculations for mechanical aspects and density functional theory (DFT) to study chemical reactivity.
Professors Wen and Huang present current developments in tribology research along with tribology fundamentals and applications, including lubrication theory, lubrication design, friction mechanism, wear mechanism, friction control, and their applications. In addition to classical tribology, Wen and Huang cover the research areas of the modern tribology, as well as the regularities and characteristics of tribological phenomena in practice. Furthermore, the authors present the basic theory, numerical analysis methods, and experimental measuring techniques of tribology as well as their applications in engineering. Provides a systematic presentation of tribology fundamentals and their applications Discusses the current states and development trends in tribology research Applies the applications to modern day engineering Computer programs available for download from the book’s companion site Principles of Tribology is aimed at postgraduates and senior-level undergraduates studying tribology, and can be used for courses covering theory and applications. Tribology professionals and students specializing in allied areas of mechanical engineering and materials science will also find the book to be a helpful reference or introduction to the topic. Companion website for the book: www.wiley.com/go/wen/tribology
Discrete Contact Mechanics with Applications in Tribology presents new solutions to contact problems for elastic and viscoelastic bodies in normal, sliding, and rolling contact, taking into account effects such as surface microgeometry, adhesion, fluid films, and viscous hysteresis in bulk material or surface layers. These solutions are applied to problems in tribology for modeling contact and friction of bodies with surface microgeometry (rough or textured). The book provides exact mathematical formulations for cases of discrete contact based on classical approaches of contact mechanics, allowing readers to study the influence of different parameters of surface microgeometry on contact characteristics and friction force.The book will help solve problems in modeling contact and friction interaction in cases of discrete character of contact interaction, mutual influence of individual contact spots in contact interaction of elastic and viscoelastic solids, calculating sliding and rolling friction forces as a result of adhesive and viscoelastic mechanisms of dissipation, and more. Provides a raft of solutions to contact problems for elastic and viscoelastic materials in normal, sliding, and rolling contact Provides solutions and formulations that consider surface microgeometry, adhesion, fluid films, viscous hysteresis in bulk material or surface layers, and other common material effects Features applied methods based on classical contact mechanics approaches, allowing for analytic and half-analytic treatment of problems
This book provides final year undergraduate students, graduate students, research scientists and engineers with an up-to-date overview of the power of using surface analytical techniques for probing complex solid surfaces and lubricants as well as for understanding their interactions in tribological systems. The first three introductory chapters illustrate the need for surface analysis in tribology and the essentials of the analytical techniques. Following these, eight chapters on applications give insight into the contribution of the major analytical techniques to tribology. These chapters are divided into three groups. The first group deals with the applications of surface analytical techniques to the study of the adhesion, friction, deformation, wear, structure and chemistry of solid surfaces at the atomic scale or in well-defined conditions. The second group focuses mainly on solid lubricants and tribological surface modifications. Lastly, the third group covers liquid lubricants in molecularly thin-film lubrication and in boundary lubrication and their interactions with surfaces.
This book examines the theoretical and practical aspects of tribological process using synergy, fractal and multifractal methods, and the fractal and multifractal models of self-similar tribosystems developed on their basis. It provides a comprehensive analysis of their effectiveness, and also considers the method of flicker noise spectroscopy with detailed parameterization of surface roughness friction. All models, problems and solutions are taken and tested on the set of real-life examples of oil-gas industry. The book is intended for researchers, graduate students and engineers specialising in the field of tribology, and also for senior students of technical colleges.
In the past decades, significant advances in tribology have been made as engineers strive to develop more reliable and high performance products. The advancements are mainly driven by the evolution of computational techniques and experimental characterization that leads to a thorough understanding of tribological process on both macro- and microscales. The purpose of this book is to present recent progress of researchers on the hydrodynamic lubrication analysis and the lubrication tests for biodegradable lubricants.
The second edition of a bestseller, this book introduces tribology in a way that builds students’ knowledge and understanding. It includes expanded information on topics such as surface characterization as well as recent advances in the field. The book provides additional descriptions of common testing methods, including diagrams and surface texturing for enhanced lubrication, and more information on rolling element bearings. It also explores surface profile characterization and elastic plastic contact mechanics including wavy surface contact, rough surface contact models, friction and wear plowing models, and thermodynamic analysis of friction.
This book conveys, in a self-contained manner, the fundamental concepts for classifying types of contact, the essential mathematical methods for the formulation of contact problems, and the numerical methods required for their solution. In addition to the methodologies, it covers a broad range of applications, including contact problems in mechanical engineering, microelectronics and nanomechanics. All chapters provide both substantial background on the theory and numerical methods, and in-depth treatments of cutting-edge research topics and applications. The book is primarily intended for doctoral students of applied mathematics, mechanics, engineering and physics with a strong interest in the theoretical modelling, numerical simulation and experimental characterization of contact problems in technology. It will also benefit researchers in the above mentioned and neighbouring fields working in academia or at private research and development centres who are interested in a concise yet comprehensive overview of contact mechanics, from its fundamental mathematical background, to the computational methods and the experimental techniques currently available for the solution of contact problems.