Download Free Model Based Engineering With Aadl Book in PDF and EPUB Free Download. You can read online Model Based Engineering With Aadl and write the review.

Conventional build-then-test practices are making today’s embedded, software-reliant systems unaffordable to build. In response, more than thirty leading industrial organizations have joined SAE (formerly, the Society of Automotive Engineers) to define the SAE Architecture Analysis & Design Language (AADL) AS-5506 Standard, a rigorous and extensible foundation for model-based engineering analysis practices that encompass software system design, integration, and assurance. Using AADL, you can conduct lightweight and rigorous analyses of critical real-time factors such as performance, dependability, security, and data integrity. You can integrate additional established and custom analysis/specification techniques into your engineering environment, developing a fully unified architecture model that makes it easier to build reliable systems that meet customer expectations. Model-Based Engineering with AADL is the first guide to using this new international standard to optimize your development processes. Coauthored by Peter H. Feiler, the standard’s author and technical lead, this introductory reference and tutorial is ideal for self-directed learning or classroom instruction, and is an excellent reference for practitioners, including architects, developers, integrators, validators, certifiers, first-level technical leaders, and project managers. Packed with real-world examples, it introduces all aspects of the AADL notation as part of an architecture-centric, model-based engineering approach to discovering embedded software systems problems earlier, when they cost less to solve. Throughout, the authors compare AADL to other modeling notations and approaches, while presenting the language via a complete case study: the development and analysis of a realistic example system through repeated refinement and analysis. Part One introduces both the AADL language and core Model-Based Engineering (MBE) practices, explaining basic software systems modeling and analysis in the context of an example system, and offering practical guidelines for effectively applying AADL. Part Two describes the characteristics of each AADL element, including their representations, applicability, and constraints. The Appendix includes comprehensive listings of AADL language elements, properties incorporated in the AADL standard, and a description of the book’s example system.
Conventional build-then-test practices are making today's embedded, software-reliant systems unaffordable to build. In response, more than thirty leading industrial organizations have joined SAE (formerly, the Society of Automotive Engineers) to define the SAE Architecture Analysis & Design Language (AADL) AS-5506 Standard, a rigorous and extensible foundation for model-based engineering analysis practices that encompass software system design, integration, and assurance. Using AADL, you can conduct lightweight and rigorous analyses of critical real-time factors such as performance, dependability, security, and data integrity. You can integrate additional established and custom analysis/specification techniques into your engineering environment, developing a fully unified architecture model that makes it easier to build reliable systems that meet customer expectations. Model-Based Engineering with AADL is the first guide to using this new international standard to optimize your development processes. Coauthored by Peter H. Feiler, the standard's author and technical lead, this introductory reference and tutorial is ideal for self-directed learning or classroom instruction, and is an excellent reference for practitioners, including architects, developers, integrators, validators, certifiers, first-level technical leaders, and project managers. Packed with real-world examples, it introduces all aspects of the AADL notation as part of an architecture-centric, model-based engineering approach to discovering embedded software systems problems earlier, when they cost less to solve. Throughout, the authors compare AADL to other modeling notations and approaches, while presenting the language via a complete case study: the development and analysis of a realistic example system through repeated refinement and analysis. Part One introduces both the AADL language and core Model-Based Engineering (MBE) practices, explaining basic software systems modeling and analysis in the context of an example system, and offering practical guidelines for effectively applying AADL. Part Two describes the characteristics of each AADL element, including their representations, applicability, and constraints. The Appendix includes comprehensive listings of AADL language elements, properties incorporated in the AADL standard, and a description of the book's example system.
This book constitutes the refereed proceedings of the 12th IFIP WG 6.1 International Conference on Formal Methods for Open Object-Based Distributed Systems, FMOODS 2010, and the 30th IFIP WG 6.1 Formal Techniques for Networked and Distributed Systems, FORTE 2010, held in Amsterdam, The Netherlands, in June 2010. The 13 revised full papers presented together with 6 short papers and the abstract of one invited talk were carefully reviewed and selected from 38 submissions. The papers are organized in topical sections on formal UML modeling; components and architecture; timed process algebra; timed and hybrid automata; program logics and analysis; and reasoning about distributed systems.
This open access book coherently gathers well-founded information on the fundamentals of and formalisms for modelling cyber-physical systems (CPS). Highlighting the cross-disciplinary nature of CPS modelling, it also serves as a bridge for anyone entering CPS from related areas of computer science or engineering. Truly complex, engineered systems-known as cyber-physical systems-that integrate physical, software, and network aspects are now on the rise. However, there is no unifying theory nor systematic design methods, techniques or tools for these systems. Individual (mechanical, electrical, network or software) engineering disciplines only offer partial solutions. A technique known as Multi-Paradigm Modelling has recently emerged suggesting to model every part and aspect of a system explicitly, at the most appropriate level(s) of abstraction, using the most appropriate modelling formalism(s), and then weaving the results together to form a representation of the system. If properly applied, it enables, among other global aspects, performance analysis, exhaustive simulation, and verification. This book is the first systematic attempt to bring together these formalisms for anyone starting in the field of CPS who seeks solid modelling foundations and a comprehensive introduction to the distinct existing techniques that are multi-paradigmatic. Though chiefly intended for master and post-graduate level students in computer science and engineering, it can also be used as a reference text for practitioners. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.
Providing a wide variety of technologies for ensuring the safety and dependability of cyber-physical systems (CPS), this book offers a comprehensive introduction to the architecture-centric modeling, analysis, and verification of CPS. In particular, it focuses on model driven engineering methods including architecture description languages, virtual prototyping, and formal analysis methods. CPS are based on a new design paradigm intended to enable emerging software-intensive systems. Embedded computers and networks monitor and control the physical processes, usually with the help of feedback loops where physical processes affect computations and vice versa. The principal challenges in system design lie in this constant interaction of software, hardware and physics. Developing reliable CPS has become a critical issue for the industry and society, because many applications such as transportation, power distribution, medical equipment and tele-medicine are dependent on CPS. Safety and security requirements must be ensured by means of powerful validation tools. Satisfying such requirements, including quality of service, implies having formally proven the required properties of the system before it is deployed. The book is concerned with internationally standardized modeling languages such as AADL, SysML, and MARTE. As the effectiveness of the technologies is demonstrated with industrial sample cases from the automotive and aerospace sectors, links between the methods presented and industrial problems are clearly understandable. Each chapter is self-contained, addressing specific scientific or engineering problems, and identifying further issues. In closing, it includes perspectives on future directions in CPS design from an architecture analysis viewpoint.
This open access two-volume set LNCS 12759 and 12760 constitutes the refereed proceedings of the 33rd International Conference on Computer Aided Verification, CAV 2021, held virtually in July 2021. The 63 full papers presented together with 16 tool papers and 5 invited papers were carefully reviewed and selected from 290 submissions. The papers were organized in the following topical sections: Part I: invited papers; AI verification; concurrency and blockchain; hybrid and cyber-physical systems; security; and synthesis. Part II: complexity and termination; decision procedures and solvers; hardware and model checking; logical foundations; and software verification. This is an open access book.
Abstract: "This document is a guide to help practitioners using the Architecture Analysis and Design Language (AADL), an international industry standard for the model-based engineering of real-time and embedded systems. The primary goal of this document is to describe an approach for and the mechanics of constructing an architectural model that can be analyzed based on the AADL. The first section of this document presents an overview of AADL concepts and many of the keywords of the language. The second part of the document illustrates a model-building approach using the AADL. It takes the perspective of an engineer who is developing a model for the first time using the AADL. This guide leads the reader through complete AADL model development based on automotive embedded control systems (cruise control, traction control, etc.) by describing the use and syntax of the AADL and interleaving modeling abstraction tradeoffs to achieve models that are abstract but precise. Models are constructed with different analysis perspectives in mind to illustrate the semantics as well as the richness of the AADL.
This book constitutes the proceedings of the 7th International Symposium on Model-Based Safety and Assessment, IMBSA 2020, held in Lisbon, Portugal, in September 2020. The conference was held virtually due to the COVID-19 pandemic. The 15 revised full papers and 4 short papers presented were carefully reviewed and selected from 30 initial submissions. The papers are organized in topical sections on safety models and languages; state-space modeling; dependability analysis process; safety assessment in automotive domain; AI and safety assurance.
A Practical Guide to SysML: The Systems Modeling Language is a comprehensive guide to SysML for systems and software engineers. It provides an advanced and practical resource for modeling systems with SysML. The source describes the modeling language and offers information about employing SysML in transitioning an organization or project to model-based systems engineering. The book also presents various examples to help readers understand the OMG Systems Modeling Professional (OCSMP) Certification Program. The text is organized into four parts. The first part provides an overview of systems engineering. It explains the model-based approach by comparing it with the document-based approach and providing the modeling principles. The overview of SYsML is also discussed. The second part of the book covers a comprehensive description of the language. It discusses the main concepts of model organization, parametrics, blocks, use cases, interactions, requirements, allocations, and profiles. The third part presents examples that illustrate how SysML supports different model-based procedures. The last part discusses how to transition and deploy SysML into an organization or project. It explains the integration of SysML into a systems development environment. Furthermore, it describes the category of data that are exchanged between a SysML tool and other types of tools, and the types of exchange mechanisms that can be used. It also covers the criteria that must be considered when selecting a SysML. Software and systems engineers, programmers, IT practitioners, experts, and non-experts will find this book useful. *The authoritative guide for understanding and applying SysML *Authored by the foremost experts on the language *Language description, examples, and quick reference guide included
This is a practical guide for software developers, and different than other software architecture books. Here's why: It teaches risk-driven architecting. There is no need for meticulous designs when risks are small, nor any excuse for sloppy designs when risks threaten your success. This book describes a way to do just enough architecture. It avoids the one-size-fits-all process tar pit with advice on how to tune your design effort based on the risks you face. It democratizes architecture. This book seeks to make architecture relevant to all software developers. Developers need to understand how to use constraints as guiderails that ensure desired outcomes, and how seemingly small changes can affect a system's properties. It cultivates declarative knowledge. There is a difference between being able to hit a ball and knowing why you are able to hit it, what psychologists refer to as procedural knowledge versus declarative knowledge. This book will make you more aware of what you have been doing and provide names for the concepts. It emphasizes the engineering. This book focuses on the technical parts of software development and what developers do to ensure the system works not job titles or processes. It shows you how to build models and analyze architectures so that you can make principled design tradeoffs. It describes the techniques software designers use to reason about medium to large sized problems and points out where you can learn specialized techniques in more detail. It provides practical advice. Software design decisions influence the architecture and vice versa. The approach in this book embraces drill-down/pop-up behavior by describing models that have various levels of abstraction, from architecture to data structure design.