Download Free Mobility Data Driven Urban Traffic Monitoring Book in PDF and EPUB Free Download. You can read online Mobility Data Driven Urban Traffic Monitoring and write the review.

This book introduces the concepts of mobility data and data-driven urban traffic monitoring. A typical framework of mobility data-based urban traffic monitoring is also presented, and it describes the processes of mobility data collection, data processing, traffic modelling, and some practical issues of applying the models for urban traffic monitoring. This book presents three novel mobility data-driven urban traffic monitoring approaches. First, to attack the challenge of mobility data sparsity, the authors propose a compressive sensing-based urban traffic monitoring approach. This solution mines the traffic correlation at the road network scale and exploits the compressive sensing theory to recover traffic conditions of the whole road network from sparse traffic samplings. Second, the authors have compared the traffic estimation performances between linear and nonlinear traffic correlation models and proposed a dynamical non-linear traffic correlation modelling-based urban traffic monitoring approach. To address the challenge of involved huge computation overheads, the approach adapts the traffic modelling and estimations tasks to Apache Spark, a popular parallel computing framework. Third, in addition to mobility data collected by the public transit systems, the authors present a crowdsensing-based urban traffic monitoring approach. The proposal exploits the lightweight mobility data collected from participatory bus riders to recover traffic statuses through careful data processing and analysis. Last but not the least, the book points out some future research directions, which can further improve the accuracy and efficiency of mobility data-driven urban traffic monitoring at large scale. This book targets researchers, computer scientists, and engineers, who are interested in the research areas of intelligent transportation systems (ITS), urban computing, big data analytic, and Internet of Things (IoT). Advanced level students studying these topics benefit from this book as well.
This Handbook presents a comprehensive and rigorous overview of the state-of-the-art on Smart Cities. It provides the reader with an authoritative, exhaustive one-stop reference on how the field has evolved and where the current and future challenges lie. From the foundations to the many overlapping dimensions (human, energy, technology, data, institutions, ethics etc.), each chapter is written by international experts and amply illustrated with figures and tables with an emphasis on current research. The Handbook is an invaluable desk reference for researchers in a wide variety of fields, not only smart cities specialists but also by scientists and policy-makers in related disciplines that are deeply influenced by the emergence of intelligent cities. It should also serve as a key resource for graduate students and young researchers entering the area, and for instructors who teach courses on these subjects. The handbook is also of interest to industry and business innovators.
Implementing Data-Driven Strategies in Smart Cities is a guidebook and roadmap for practitioners seeking to operationalize data-driven urban interventions. The book opens by exploring the revolution that big data, data science, and the Internet of Things are making feasible for the city. It explores alternate topologies, typologies, and approaches to operationalize data science in cities, drawn from global examples including top-down, bottom-up, greenfield, brownfield, issue-based, and data-driven. It channels and expands on the classic data science model for data-driven urban interventions – data capture, data quality, cleansing and curation, data analysis, visualization and modeling, and data governance, privacy, and confidentiality. Throughout, illustrative case studies demonstrate successes realized in such diverse cities as Barcelona, Cologne, Manila, Miami, New York, Nancy, Nice, São Paulo, Seoul, Singapore, Stockholm, and Zurich. Given the heavy emphasis on global case studies, this work is particularly suitable for any urban manager, policymaker, or practitioner responsible for delivering technological services for the public sector from sectors as diverse as energy, transportation, pollution, and waste management. - Explores numerous specific urban interventions drawn from global case studies, helping readers understand real urban challenges and create data-driven solutions - Provides a step-by-step and applied holistic guide and methodology for immediate application in the reader's own business agenda - Presents cutting edge technology presentation with coverage of innovations such as the Internet of Things, robotics, 5G, edge/fog computing, blockchain, intelligent transport systems, and connected-automated mobility
Data-Driven Solutions to Transportation Problems explores the fundamental principle of analyzing different types of transportation-related data using methodologies such as the data fusion model, the big data mining approach, computer vision-enabled traffic sensing data analysis, and machine learning. The book examines the state-of-the-art in data-enabled methodologies, technologies and applications in transportation. Readers will learn how to solve problems relating to energy efficiency under connected vehicle environments, urban travel behavior, trajectory data-based travel pattern identification, public transportation analysis, traffic signal control efficiency, optimizing traffic networks network, and much more.
Data-Driven Traffic Engineering: Understanding of Traffic and Applications Based on Three-Phase Traffic Theory shifts the current focus from using modeling and simulation data for traffic measurements to the use of actual data. The book uses real-world, empirically-derived data from a large fleet of connected vehicles, local observations and aerial observation to shed light on key traffic phenomena. Readers will learn how to develop an understanding of the empirical features of vehicular traffic networks and how to consider these features in emerging, intelligent transport systems. Topics cover congestion patterns, fuel consumption, the influence of weather, and much more. This book offers a unique, data-driven analysis of vehicular traffic in traffic networks, also considering how to apply data-driven insights to the intelligent transport systems of the future. - Provides an empirically-driven analysis of traffic measurements/congestion based on real-world data collected from a global fleet of vehicles - Applies Kerner's three-phase traffic theory to empirical data - Offers a critical scientific understanding of the underlying concerns of traffic control in automated driving and intelligent transport systems
The Handbook of Research on AI and ML for Intelligent Machines and Systems offers a comprehensive exploration of the pivotal role played by artificial intelligence (AI) and machine learning (ML) technologies in the development of intelligent machines. As the demand for intelligent machines continues to rise across various sectors, understanding the integration of these advanced technologies becomes paramount. While AI and ML have individually showcased their capabilities in developing robust intelligent machine systems and services, their fusion holds the key to propelling intelligent machines to a new realm of transformation. By compiling recent advancements in intelligent machines that rely on machine learning and deep learning technologies, this book serves as a vital resource for researchers, graduate students, PhD scholars, faculty members, scientists, and software developers. It offers valuable insights into the key concepts of AI and ML, covering essential security aspects, current trends, and often overlooked perspectives that are crucial for achieving comprehensive understanding. It not only explores the theoretical foundations of AI and ML but also provides guidance on applying these techniques to solve real-world problems. Unlike traditional texts, it offers flexibility through its distinctive module-based structure, allowing readers to follow their own learning paths.
Digital Twins for Smart Cities and Villages provides a holistic view of digital twin technology and how it can be deployed to develop smart cities and smart villages. Smart manufacturing, smart healthcare, smart education, smart agriculture, smart rural solutions, and related methodologies using digital twins are discussed, including challenges in deployment, their solutions and future roadmaps. This knowledge, enriched by a variety of case studies presented in the book, may empower readers with new capabilities for new research as well as new tasks and strategies for practical implementation and real-world problem solving.The book is thoughtfully structured, starting from the background of digital twin concepts and basic know-how to serve the needs of those new to the subject. It continues with implementation to facilitate and improve management in several urban contexts, infrastructures, and more. Global case study assessments further provide a deep characterization of the state-of-the-art in digital twin in urban and rural contexts. - Uniquely focuses on applications for smart cities and villages, including smart services for health, education, mobility, and agriculture - Provides use cases and practical deployment of research involved in the emerging uses of digital twins - Discusses all pertinent issues, challenges, and possible solutions instrumental in implementing digital twins smart solutions in this context - Edited and authored by a global team of experts in their given fields