Download Free Mobile Working Hydraulic System Dynamics Book in PDF and EPUB Free Download. You can read online Mobile Working Hydraulic System Dynamics and write the review.

This thesis deals with innovative working hydraulic systems for mobile machines. Flow control systems are studied as an alternative to load sensing. The fundamental difference is that the pump is controlled based on the operator’s command signals rather than feedback signals from the loads. This control approach enables higher energy efficiency and there is no load pressure feedback causing stability issues. Experimental results show a reduced pump pressure margin and energy saving potential for a wheel loader application. The damping contribution from the inlet and outlet orifice in directional valves is studied. Design rules are developed and verified by experiments. A novel system architecture is proposed where flow control, load sensing and open-centre are merged into a generalized system description. The proposed system is configurable and the operator can realize the characteristics of any of the standard systems without compromising energy efficiency. This can be done non-discretely on-the-fly. Experiments show that it is possible to avoid unnecessary energy losses while improving system response and increasing stability margins compared to load sensing. Static and dynamic differences between different control modes are also demonstrated experimentally.
Hydraulic Systems for Mobile Equipment is the gold standard for hydraulics instruction, offering a comprehensive, single-source resource for introductory and advanced content. It provides very detailed, high-level instruction for students studying to become professional mobile hydraulics service technicians. With a primary emphasis on agricultural and construction machinery, it can also empower students working in any related field of hydraulics. The textbook is correlated to the competencies of the AED Hydraulics/Hydrostatics and Administrative/Safety Standards and the ASE Education Foundation Heavy Trucks Task List.
Mobile Working Machines are defined by three characteristics. These machines have a cer-tain task of doing a working process, they are mobile, and they have a signifi cant energy share in their working functions. The machines should be as productive, efficient and of high quality as possible. All these machines in the fi eld of agriculture, forestry, construction, logistics, municipal sector, and in other special applications work in different applications. But, many technologies placed in the machines are the same, similar or comparable; therefore, different branches can learn from each other. Mobile Working Machines provides a wide and deep view into the technologies used in these machines. Appropriate for new engineers as well as those who wish to increase their knowledge in this field, this book brings together all the latest research and development into one place.
The book adopted lumped modeling technique, using Matlab-Simulink, to model discrete hydraulic components that can be re-characterized and used repeatedly in system models.
The excitement and the glitz of mechatronics has shifted the engineering community's attention away from fluid power systems in recent years. However, fluid power still remains advantageous in many applications compared to electrical or mechanical power transmission methods. Designers are left with few practical resources to help in the design and
More and more vehicles are being electrified. Mobile working machines and heavy trucks are not excluded, and these machines are often hydraulically intense. Electrification entails new requirements for the hydraulic system and its components, and these requirements must be taken into consideration. Hydraulic systems have looked similar for a long time, but now there is an opportunity to advance. Many things change when a diesel engine is replaced with an electric motor. For example, variable-speed control becomes more relevant, electric regeneration becomes possible, and the use of multiple prime movers becomes an attractive alternative. The noise from the hydraulic system will also be more noticeable when the diesel engine is gone. Furthermore, the introduction of batteries to the system makes the energy more valuable, since batteries are heavy and costly compared to a diesel tank. Therefore, it is commercially viable to invest in the hydraulic system. This thesis revolves around the heart of the hydraulic system, that also is the root of all evil. That is the pump. Traditionally, a pump has had either a fixed displacement or a continuously variable displacement. Here, the focus is on something in between, namely a pump with discrete displacement. The idea of discrete displacement is far from unique, but has not been investigated in detail in combination with variable speed before. In this thesis, a novel design for a quiet pump with discrete displacement is presented and analysed. The results show that discrete displacement is relevant from an energy perspective for machines working extensively at high pressure levels and with low flow rates, and that a few discrete values are enough to make a significant difference. However, for other cycles, the possible energy gains are very limited, but the discrete displacement can be a valuable feature if downsizing the electric machine is of interest.
A unique resource that demystifies the physical basics of hydraulic systems Hydraulic Control Systems offers students and professionals a reliable, complete volume of the most up-to-date hows and whys of today's hydraulic control system fundamentals. Complete with insightful industry examples, it features the latest coverage of modeling and control systems with a widely accepted approach to systems design. Hydraulic Control Systems is a powerful tool for developing a solid understanding of hydraulic control systems that will serve the practicing engineer in the field. Throughout the book, illustrative case studies highlight important topics and demonstrate how equations can be implemented and used in the real world. Featuring exercise problems at the end of every chapter, Hydraulic Control Systems presents: A useful review of fluid mechanics and system dynamics Thorough analysis of transient fluid flow forces within valves Discussions of flow ripple for both gear pumps and axial piston pumps Updated analysis of the pump control problems associated with swash plate type machines A successful methodology for hydraulic system design—starting from the load point of the system and working backward to the ultimate power source Reduced-order models and PID controllers showing control objectives of position, velocity, and effort
A hydraulic system controls the transmission of energy. It transforms the mechanical energy of a prime motor into fluid energy. It controls the fluid configuration and transforms the fluid energy into mechanical work at specified locations. Hydraulic systems feature high power density, sensitive response and precision of control, especially when operating under computer control. Thus, they have been widely used as the energy transmission control systems in aircraft, ships, construction machinery, machine tools and others. Therefore, it is indispensable for a mechanical engineer to become versed with hydraulic control technology. The technology is mainly associated with fluid mechanics and control theories, but it is related to the wider field of engineering as well.This book provides a comprehensive treatment of the analysis and design of hydraulic control systems which will be invaluable for practising engineers, as well as undergraduate and graduate students specializing in mechanical engineering. Firstly, the fundamental concepts of hydraulic control systems are addressed, and illustrated by reference to applications in the field of aviation engineering. Secondly, the fluid mechanics necessary for the comprehension of hydraulic elements are provided. The technology of the hydraulic components composing hydraulic control systems is addressed, the key focus being on how to apply theoretical concepts into the design and analysis of hydraulic components and systems. Finally, there is a discussion on fundamental control technology and its application to hydraulic servo systems. This includes the formation of hydraulic servo systems, basic control theorems, methods identifying the dynamic characteristics of hydraulic actuator systems, and a design method for hydraulic control systems. Numerical exercises are provided at the end of each chapter.
This book shows an independent metering electro-hydraulic control system involving its flexible hardware layouts, complex software control, representative products and applications. The book includes one chapter introducing the background and motivation of the independent metering electro-hydraulic control system. It also includes one chapter to summarize various hardware layouts involving the utilized hydraulic components and circuits, as well as analyze their advantages and disadvantages. It emphatically consists of four chapters demonstrating the detailed multivariable control strategies from three levels: load, valve and pump, together with fault-tolerant control under the fault condition. It includes a last chapter, in which products of independent metering control valve and their applications in some typical heavy-duty mobile machinery are collective works of reviews illustrative of recent advances. This book is interesting and useful to a wide readership in the various fields of fluid power transmission and control.
Engineering system dynamics focuses on deriving mathematical models based on simplified physical representations of actual systems, such as mechanical, electrical, fluid, or thermal, and on solving these models for analysis or design purposes. System Dynamics for Engineering Students: Concepts and Applications features a classical approach to system dynamics and is designed to be utilized as a one-semester system dynamics text for upper-level undergraduate students with emphasis on mechanical, aerospace, or electrical engineering. It is the first system dynamics textbook to include examples from compliant (flexible) mechanisms and micro/nano electromechanical systems (MEMS/NEMS). This new second edition has been updated to provide more balance between analytical and computational approaches; introduces additional in-text coverage of Controls; and includes numerous fully solved examples and exercises. - Features a more balanced treatment of mechanical, electrical, fluid, and thermal systems than other texts - Introduces examples from compliant (flexible) mechanisms and MEMS/NEMS - Includes a chapter on coupled-field systems - Incorporates MATLAB® and Simulink® computational software tools throughout the book - Supplements the text with extensive instructor support available online: instructor's solution manual, image bank, and PowerPoint lecture slides NEW FOR THE SECOND EDITION - Provides more balance between analytical and computational approaches, including integration of Lagrangian equations as another modelling technique of dynamic systems - Includes additional in-text coverage of Controls, to meet the needs of schools that cover both controls and system dynamics in the course - Features a broader range of applications, including additional applications in pneumatic and hydraulic systems, and new applications in aerospace, automotive, and bioengineering systems, making the book even more appealing to mechanical engineers - Updates include new and revised examples and end-of-chapter exercises with a wider variety of engineering applications