Download Free Mobile Elements And Plant Genome Evolution Comparative Analyses And Computational Tools Volume Ii Book in PDF and EPUB Free Download. You can read online Mobile Elements And Plant Genome Evolution Comparative Analyses And Computational Tools Volume Ii and write the review.

This Research Topic is part of the Mobile Elements and Plant Genome Evolution, Comparative Analyses and Computational Tools series: Mobile Elements and Plant Genome Evolution, Comparative Analyses and Computational Tools Transposable elements are very common mobile genetic elements that are composed of several classes and make up the majority of eukaryotic genomes. The movement and accumulation of mobile genetic elements have been a major force in the formation of the genes and genomes of nearly all organisms. As dispersed and ubiquitous mobile elements, their life cycle of replicative transposition leads to genome rearrangements affecting cellular function. Transposable elements are important drivers of species diversity, and they exhibit great variety in structure, size, and mechanisms of transposition, making them important putative actors in genome evolution.
An exploration of the raw power of genetic material to refashion itself to any purpose... Virtually all organisms contain multiple mobile DNAs that can move from place to place, and in some organisms, mobile DNA elements make up a significant portion of the genome. Mobile DNA III provides a comprehensive review of recent research, including findings suggesting the important role that mobile elements play in genome evolution and stability. Editor-in-Chief Nancy L. Craig assembled a team of multidisciplinary experts to develop this cutting-edge resource that covers the specific molecular mechanisms involved in recombination, including a detailed structural analysis of the enzymes responsible presents a detailed account of the many different recombination systems that can rearrange genomes examines the tremendous impact of mobile DNA in virtually all organisms Mobile DNA III is valuable as an in-depth supplemental reading for upper level life sciences students and as a reference for investigators exploring new biological systems. Biomedical researchers will find documentation of recent advances in understanding immune-antigen conflict between host and pathogen. It introduces biotechnicians to amazing tools for in vivo control of designer DNAs. It allows specialists to pick and choose advanced reviews of specific elements and to be drawn in by unexpected parallels and contrasts among the elements in diverse organisms. Mobile DNA III provides the most lucid reviews of these complex topics available anywhere.
Documents the remarkable mobility of DNA in procaryotic and eucaryotic genomes: the ability of various DNA segments to move to new sites, to invert, and to undergo deletion or amplification, generally without the extensive DNA sequence homology needed for classical recombination. Seventy contributors explore the mechanisms of these rearrangements, how they are regulated, their biological consequences, and their potential use as research tools. For students and researchers of molecular genetics. Annotation copyrighted by Book News, Inc., Portland, OR
This detailed book presents recent methodologies for the task of inspecting the genomic world of plants, extracting valuable information, and presenting it in a readable way. With a focus on bioinformatics tools, the volume explores phylogenetics and evolution, Omics analysis, as well as experimental procedures for trait characterization. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of vital expert implementation advice that will lead to successful results. Authoritative and practical, Plant Comparative Genomics serves as an ideal resource for researchers looking to implement comparative tools in order to explore their genomic data for their daily scientific work.
Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, Three Volume Set combines elements of computer science, information technology, mathematics, statistics and biotechnology, providing the methodology and in silico solutions to mine biological data and processes. The book covers Theory, Topics and Applications, with a special focus on Integrative –omics and Systems Biology. The theoretical, methodological underpinnings of BCB, including phylogeny are covered, as are more current areas of focus, such as translational bioinformatics, cheminformatics, and environmental informatics. Finally, Applications provide guidance for commonly asked questions. This major reference work spans basic and cutting-edge methodologies authored by leaders in the field, providing an invaluable resource for students, scientists, professionals in research institutes, and a broad swath of researchers in biotechnology and the biomedical and pharmaceutical industries. Brings together information from computer science, information technology, mathematics, statistics and biotechnology Written and reviewed by leading experts in the field, providing a unique and authoritative resource Focuses on the main theoretical and methodological concepts before expanding on specific topics and applications Includes interactive images, multimedia tools and crosslinking to further resources and databases
Once considered merely `selfish' or `parasitic' DNA, transposable elements are today recognized as being of major biological significance. Not only are these elements a major source of mutation, they have contributed both directly and indirectly to the evolution of genome structure and function. On October 8-10, 1999, 100 molecular biologists and evolutionists representing 11 countries met on the campus of The University of Georgia in Athens for the inaugural Georgia Genetics Symposium. The topics of presentations ranged from how the elements themselves have evolved to the impact transposable elements have had on the evolution of their host genomes. The papers in this volume therefore represent state-of-the-art thinking, by leading world experts in the field, on the evolutionary significance of transposable elements.
Recent major advances in the field of comparative genomics and cytogenomics of plants, particularly associated with the completion of ambitious genome projects, have uncovered astonishing facets of the architecture and evolutionary history of plant genomes. The aim of this book was to review these recent developments as well as their implications in our understanding of the mechanisms which drive plant diversity. New insights into the evolution of gene functions, gene families and genome size are presented, with particular emphasis on the evolutionary impact of polyploidization and transposable elements. Knowledge on the structure and evolution of plant sex chromosomes, centromeres and microRNAs is reviewed and updated. Taken together, the contributions by internationally recognized experts present a panoramic overview of the structural features and evolutionary dynamics of plant genomes.This volume of Genome Dynamics will provide researchers, teachers and students in the fields of biology and agronomy with a valuable source of current knowledge on plant genomes.
This book celebrates the dawn of the rye genomics era with concise, comprehensive, and accessible reviews on the current state of rye genomic research, written by experts in the field for students, researchers and growers. To most, rye is the key ingredient in a flavoursome bread or their favourite American whisky. To a farmer, rye is the remarkable grain that tolerates the harshest winters and the most unforgiving soils, befitting its legacy as the life-giving seed that fed the ancient civilisations of northern Eurasia. Since the mid-1900s, scientists have employed genetic approaches to better understand and utilize rye, but only since the technological advances of the mid-2010s has the possibility of addressing questions using rye genome assemblies become a reality. Alongside the secret of its unique survival abilities, rye genomics has accelerated research on a host of intriguing topics such as the complex history of rye’s domestication by humans, the nature of genes that switch fertility on and off, the function and origin of accessory chromosomes, and the evolution of selfish DNA.
This new volume provides an up-to-date understanding of the numerous classes of plant transposable elements, the mobile units of DNA that comprise large portions of plant genomes, which are an important contributor for gene and genome evolution. Transposable elements (TEs) are major components of large plant genomes and main drivers of genome evolution, known to produce a wide variety of changes in plant gene expression and function. Providing a systematic interpretation of protocols designed to characterize TEs and their biotechnological roles, the volume explores TEs in plant development, their architecture, their epigenetic regulation, their use in DNA repair, their evolution and speciation, while also highlighting their importance in the approaching epoch of climate change. The volume begins with introduction of transposable elements, covering their classification and transposition. It delves into protocols designed to characterize TEs and their biotechnological applications. The book includes computational approaches for prediction and analysis, retro-transposon capture sequencing, and more. The section on transposon biology focuses on its role in plant development and as natural genetic engineers of genome mutation, evolution, and speciation. The book looks further into transposon applications in genome editing, exploring tagging and mutagenesis, genome engineering, and more.